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ABSTRACT: Recently, nickel phosphides (NixPy) have been
reported to enable selective electrochemical formation of multi-
carbon products (C3 and C4) via the CO2 reduction reaction
(CO2RR); nevertheless, their activities remain low. In order to
understand the roots of their high selectivity and low activity and
to direct the design of more active NixPy-based CO2RR catalysts,
we investigate the CO2RR mechanism on Ni2P using density
functional theory (DFT) calculations. We reveal that the reaction
proceeds through the formate pathway, followed by formaldehyde
(H2CO*) formation and self-condensation. Moreover, we
demonstrate that surface hydride transfer steps, along with
surface-mediated C−C coupling, are essential in order to avoid
C1 product formation and boost selectivity toward multicarbon
products. In addition, we find that the thermal surface hydride transfer from the surface to the physisorbed CO2 is one of the key
rate-limiting steps, and since it is not electroactive, it cannot be accelerated by applying an overpotential. Finally, our results also
show that the hydrogen affinity of the surface and the dynamic surface reconstruction via H adsorption facilitate selective CO2
reduction and C−C coupling on Ni2P. These findings provide an impetus for exploring materials design space to identify the
physical principles that govern the thermodynamics of rate-limiting thermal steps in electrocatalytic processes.
KEYWORDS: nickel phosphides, CO2, electroreduction, multicarbon products

■ INTRODUCTION

Reducing CO2 to hydrocarbons and chemical feedstocks (e.g.,
alcohols, aldehydes, ketones, etc.) is a crucial challenge of the
21st century, due to its environmental and industrial
consequences.1,2 Thus, designing active and selective catalysts
for the CO2RR has become a very active area of research.
Electrocatalysis, for example, using Cu, transition metal oxides,
phosphides, and chalcogenides, has attracted much attention in
recent years, as it provides promising avenues for CO2
reduction.3−8 However, even the state-of-the-art catalysts for
the CO2RR suffer from activity, selectivity, and stability issues
that limit their widespread implementation.5,9 In particular, the
high kinetic barrier associated with CO2 activation and
competition between the CO2RR and the hydrogen evolution
reaction (HER) under reducing conditions are major
challenges impeding the simultaneous improvement of the
activity and selectivity of CO2RR catalysts.5,10,11 Additionally,
the application of electrode potentials and the presence of
adsorbates has also been shown to induce surface reconstruc-
tions,12−19 thus further complicating the design of electro-
catalysts for the CO2RR.

12,20−24

Surface reconstruction is a set of phenomena at which the
surface stoichiometry and/or atomic configuration change
relative to the bulk.25−27 Such changes occur in order to help

the surface cope with the broken bonds resulting from surface
formation and to reduce the surface Gibbs free energy.28 There
are numerous examples of this phenomenon, including the
formation of oxide monolayers on silver surfaces,29,30

formation of ultrathin oxide layers on nitrides,31 surface
hydrogenation of phosphides,12,32 and nonstoichiometric
surface reconstruction of polar and ferroelectric materi-
als.27,33,34 The reconstructed surfaces can have significantly
different surface chemistry and catalytic properties than the
bulk-like surfaces.35−37

To date, Cu is the most widely used catalyst for the CO2RR,
due to its high Faradaic efficiency (FE). However, it does
generate a mixture of products, lacking the desired selectivity
toward C1, C2, and C3 products (where the subscript
corresponds to the number of carbons in a product).3,7,38−48

Recently, there have been efforts to use chemical treatments to
render Cu-based systems more selective toward C2 product
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formation.49 In addition to Cu and Cu-based materials,
transition-metal oxides and chalcogenides also have been
developed as CO2RR catalysts; however, it remains challenging
to attain both high activity and high selectivity for multicarbon
product formation using these materials.23,50−58

Over the last 20 years, theoretical investigations have
provided significant mechanistic insights for overcoming the
limitations associated with the CO2RR. For example, it was
shown that the CO2 activation via H transfer from the solvent
to either the C (to form formate HCOO*) or one of the O
atoms (to form hydrocarboxylate HOCO*) of CO2 has a large
kinetic barrier.10,59 Therefore, lowering the CO2 activation
barrier is a crucial target for improving the activity of CO2RR
catalysts.10,59−61 Additionally, it has been proposed that
pathways involving the formate intermediate lead primarily
to C1 products, whereas those involving carbon monoxide
(CO*) as the key intermediate (formed via surface-adsorbed
HOCO*) are more likely to generate multicarbon prod-
ucts.5,40,41,43,52,62−65 In this regard, the electrochemical barrier
for CO* to CHO* has been identified as another important
descriptor for the selectivity of CO2RR catalysts toward
multicarbon product formation.5,41,66,67

Recently, nickel phosphides (NixPy) were reported to exhibit
high selectivity toward multicarbon products possessing the
chemically precious keto (C3) and heterocyclic furan (C4)
moieties (Figure 1a).68 More specifically, at 0 V versus RHE
and pH 7.5, high selectivity was observed toward C3 (methyl
glyoxal, FE ≈ 27%) and C4 (2,3-furandiol, FE ≈ 72%)

products (shown in green); the C1 (formate, FE ≈ 1%)
product was obtained only in small amounts (shown in red).68

While selectivity toward multicarbon products was achieved,
the catalysts suffer from low activity, with multicarbon product
yields on the order of micromoles.68 While previous
experimental and theoretical studies have revealed and
explained the catalytic activity of NixPy toward other reactions
such as the HER,12,32,69−72 there are no previous studies that
explain their activity and selectivity toward multicarbon
product formation via the CO2RR.

68 Hence, detailed
mechanistic studies are needed to provide insights into the
origin of the high selectivity and low activity of Ni2P,
ultimately leading the way to design improved catalysts for
selective multicarbon product formation.
Here, we present mechanistic insights into the remarkably

selective formation of valuable multicarbon products via the
CO2RR on Ni2P. First, we identify the thermodynamically
stable surface under experimental conditions by including the
effect of pH and the electrochemical potential.12,68 Next, we
investigate CO2 activation, leading to the prediction that the
CO2RR on Ni2P follows the formate (HCOO*) pathway. We
determine that the large barrier for CO2 activation via surface
H transfer and formate (HCOO*) to formic acid (HCOOH*)
transformation step limits the catalytic activity of Ni2P and
results in the low turnover frequency that was observed
experimentally. Next, we explain how the formate pathway
leads to the formation of formaldehyde (H2CO*) which later
undergoes C−C coupling. It is shown that the strong hydrogen

Figure 1. (a) CO2RR products on Ni2P, along with the experimental conditions used to perform the reaction.68 Formate (C1) is the minor product
(shown in red, FE ≈ 1%), whereas methyl glyoxal (C3, FE ≈ 27%) and 2,3-furandiol (C4, FE ≈ 72%) are the major products (shown in green). (b)
Computed surface phase diagram of Ni2P(0001) in equilibrium with 1 M H3PO4 or 1 M PH3 and Ni(s) or 1 M Ni2+. The stable surface at 0 V vs
RHE is Ni2P/Ni3P2 + H (blue shaded region). The white box encloses the experimental U and pH conditions. Black dashed lines correspond to the
bulk stability region under aqueous conditions and the white dashed line is the HER line.12 (c) Ni3P2 termination of Ni2P(0001). The Ni3 hollow
site, which is found to strongly bind H (ΔG = −0.46 eV) and the CO2RR intermediates, is enclosed by a blue circle. (d) CO2 and H coadsorption
geometry on Ni2P/Ni3P2. The color code is Ni (gray), P (purple), C (brown), O (red), and H (green).
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affinity of the surface, leading to H* adsorption, drives the
intermediates toward the C−C bond formation steps. In
particular, we find that the availability of multiple H-binding
sites on the surface facilitates H2CO* self-condensation.
Finally, we describe how a sequence of C−C coupling steps
and other important chemical transformations (e.g., enol−keto
tautomerization, water elimination, and cyclization) leads to
the formation of the experimentally observed C3 and C4
products.68

■ METHODS

DFT calculations of the thermodynamics and kinetics of the
CO2RR on Ni2P were carried out using the Quantum
ESPRESSO software package.73 The electronic exchange−
correlation energy was calculated using the generalized
gradient approximation of Perdew, Burke, and Ernzerhof
(PBE).10,12,74,75 A kinetic energy cutoff of 50 Ry was used to
expand the wave functions of the valence electrons in a plane-
wave basis. The OPIUM (version 3.7) software was used to
generate designed, optimized, norm-conserving, nonlocal
pseudopotentials.76−78 The DFT-D3 correction developed by
Grimme et al. was used to capture dispersion interactions,
which are crucial to model catalytic transformations.79−83

Both experiment and theory identify Ni3P2 as the
thermodynamically stable termination of Ni2P(0001) (Figure
1c).12,84−86 For this reason, we modeled the CO2RR on the

Ni3P2-terminated Ni2P(0001) surface using a periodic slab
with eight layers along the c lattice vector and 20 Å of vacuum.
We use a R( 3 3 ) 30× ° surface unit cell instead of the 1 ×
1 in order to minimize the interaction between adsorbates in
periodic images and to provide ample room for modeling
diffusion kinetics. A Γ-centered, 2 × 2 × 1 k-point grid was
used to sample the Brillouin zone. We used the climbing image
nudged elastic band (CI-NEB) method to calculate kinetic
barriers for the thermal steps.87 The computational hydrogen
electrode model was used to capture the pH and potential
dependence of the free energies of the reaction intermedi-
ates.41

Surface phase diagrams under realistic aqueous conditions
were constructed using the procedure outlined in the
literature.12−14 Similar to a previous work,12 we find that
Ni2P(0001) adsorbs H* in the Ni3 hollow site (Figure 1b)
under the experimental conditions (0 V vs RHE and pH 7.5).
In order to compute the contributions of the zero-point energy
and vibrational entropy to the free-energy change for each
reaction step, we conducted vibrational frequency analysis
within the harmonic approximation (Table S1 in Supporting
Information). The kinetic barrier of the proton coupled
electron transfer steps is calculated using an explicit solvation
approach (with some implicit solvation also performed for
benchmarking purposes) and the calculation details are given
in Supporting Information.

Figure 2. Free-energy diagrams for (a) CO2 activation and (b) H2CO* formation. In (a), we compare the relative energies of the two competing
pathways for hydrogen transfer. Green (kinetically favored) and red (kinetically disfavored) lines correspond to the formation of the formate
(HCOO*) and hydrocarboxyl (HOCO*) intermediates, respectively. Transition states (blue lines) are shown for both pathways. (b) Formation of
H2CO* from HCOO*, where insets show the binding geometries for each intermediate. The more favorable pathway is shown in black dashed
lines and the less favorable pathway is shown in dashed gray. The color code is Ni (gray), P (purple), C (brown), O (red), and H (green).
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■ RESULTS AND DISCUSSION

CO2 Activation. Here, we model the activation of CO2 via
the formation of either HCOO* or HOCO* at the Ni3 hollow
site on Ni2P (Ni3P2 termination). We find that under the
experimental equilibrium conditions, the Ni3 hollow site is
occupied by H* (Figure 1b), consistent with previous
theoretical studies.12,71,88 Since Ni2P is metallic and H2O
binds weakly to metallic surfaces89 and the O 2p lone pair is
repelled by the hydridic nature of H* (physisorption energy of
H2O on H adsorbed Ni3P2 termination is −0.26 eV),12,69,89

there is no significant site competition between H2O and CO2.
Consequently, the physisorbed CO2* geometry can be
considered as a reasonable geometry for the CO2RR on
Ni2P, even in the presence of the aqueous environment.10,41

Specifically, we find that CO2 physisorbs (with a physisorption
energy of −0.16 eV) above the H* at the Ni3 hollow site
(Figure 1d). In this physisorbed geometry, the C of CO2 is
2.13 Å from the H*, and one of the O atoms is closer to the
surface (3.67 Å away from surface) than the other (4.26 Å
away from surface).10 Due to this starting geometry and the
preoccupation of the surface active site with a H*, CO2
activation requires surface H transfer, which does not only
activate the CO2 but empties the active site for the resulting
intermediate. Such a reaction is a thermal step (as opposed to
electrochemical) and is thus unaffected by changes in the
electrode potential. This hydride transfer can occur through
two pathways: to the C of physisorbed CO2 to produce
formate (HCOO*) or to one of its O atoms to produce
hydrocarboxylate (HOCO*).5,10,41,52 We find that the ΔG
values for the reaction of CO2* and H* to form HCOO* and
HOCO* are 0.16 and 0.44 eV, respectively (difference in free
energy between the initial and final states in Figure 2a).
Therefore, HCOO* is the thermodynamically preferred
intermediate. Additionally, the kinetic barrier associated with
HCOO* formation (1.03 eV) is much smaller than that of
HOCO* formation (1.73 eV), thus practically eliminating any
pathways involving the HOCO* intermediate from consid-
eration. The dual thermodynamic and kinetic preference for
CO2 hydrogenation at the partially positively charged C atom
[see the transition state (TS) shown in Figure 2a] is likely
related to the hydridic nature of H* at the Ni3 hollow site.12

The kinetic barrier for CO2 activation to HCOO* (1.03 eV) is
related to the energy penalties associated with CO2 bending

10

(see the TS for the green dotted pathway in Figure 2a, noting
that the linear physisorbed CO2 molecule bends upon
interaction with H*) and H* migration from the Ni3 hollow
site to a top Ni site.12 We also note that compared to bare
transition-metal surfaces, the electrostatics created by partial
positive (Ni) and negative (P and hydridic H*) sites on the
surface can help lower the thermal CO2 activation step by
providing some stabilization to the transition state. In
summary, we find that the initiation of the CO2RR on Ni2P
involves HCOO* formation and identify the large kinetic
barrier of HCOO* formation (1.03 eV) via surface hydride
transfer as one of the root causes for the low turnover
frequency observed experimentally.68

Formation of Formaldehyde from Formate. Following
the generation of HCOO*, it can either desorb or participate
in further reactions. We investigate two different pathways for
further reduction of the adsorbed HCOO*: (a) the first
pathway involves a proton-coupled electron transfer (PCET)-
assisted rearrangement of HCOO* at the Ni3 hollow site

(forming a so-called “co-adsorbed geometry” with the
neighboring H*), followed by a surface hydrogenation step
(via transfer of the neighboring H*) to form HCOOH*, and
(b) the second pathway involves the direct protonation of
HCOO* via PCET to form HCOOH*. We find that the first
pathway via formate rearrangement is the energetically
preferred one as discussed below. Here, the surface catalyzes
the H2O dissociation event by forming a surface-bound H* at
the Ni−Ni bridge site, while the OH* is bound to an adjacent
Ni site (see the TS corresponding to the PCET step in the
black dashed line in Figure 2b). Compared to bare transition-
metal surfaces, the electrostatics of the surface created by
surface partial charges helps stabilize the surface−water
interactions,89 thus lowering the corresponding barrier of the
surface-mediated PCET step. We have calculated the proton-
coupled electron transfer barrier by considering two water
molecules. Such an approach is found to be sufficient to
understand the reaction energetics in the case of the CO2RR
on RuO2

90 and the oxygen evolution reaction on RuO2, IrO2,
and TiO2.

91 Here, we consider that the PCET happens via the
H of one of the H2O and the OH* binds to the surface. The
other H2O can then stabilize such an intermediate. Like the
CO2RR on RuO2,

90 the desorption barrier of OH* is not
calculated, and we assume that OH* is in equilibrium with the
bulk solution. Further details for calculating the kinetic barrier
of the PCET steps are given in the Section 1.c of Supporting
Information.
Regarding the first pathway, the kinetic barrier associated

with the formation of the co-adsorbed HCOO* + H*
intermediate via PCET is found to be 1.05 eV (black dashed
line from HCOO* to HCOO* + H* in Figure 2b).
Furthermore, the co-adsorbed state of HCOO* and H* is
0.45 eV higher in free energy than HCOO* (at 0 V vs RHE).
As a result of such HCOO* rearrangement to a higher energy
co-adsorbed (HCOO* + H*) intermediate and the entropic
driving force to go beyond a nonzero concentration in
solution, a small concentration of formate will build up in
the solution, thus explaining why it is a minor product in
experiments.68 Additionally, it is worth mentioning that in this
co-adsorbed (HCOO* + H*) geometry, H* is close to (2.30 Å
O···H*) the nearest O of HCOO* (HCOO* + H* in Figure
2b), which facilitates the formation of HCOOH* via thermal
surface hydrogenation. We find that the kinetic barrier for H*
transfer to HCOO* is 0.44 eV (“thermal hydrogen transfer
step” in Figure 2b) and thus easily surmountable at room
temperature.
Regarding the second pathway, we find that the kinetic

barrier for the formation of HCOOH* through the direct
protonation of HCOO* at one of the O centers is 1.12 eV
(shown as a dashed gray line in Figure 2b). Thus, the
formation of HCOOH* is energetically more favorable via the
co-adsorbed (HCOO* + H*) intermediate rather than the
PCET-mediated direct protonation of HCOO*.
Once the HCOOH* forms, it undergoes water elimination

consisting of two consecutive downhill PCET steps, to form
H2CO* (Figure 2b). We find that surface hydrogen affinity
facilitates the HCOO* rearrangement process and subse-
quently causes HCOO* hydrogenation to form HCOOH*.
Therefore, because HCOO* can react with H* and because
Ni2P adsorbs H strongly, the HCOO* that forms can react to
form H2CO* and onward to multicarbon product formation
(as shown in the next sections), avoiding surface poisoning.
This route, with formate leading to multicarbon products
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(shown in the next sections) on Ni2P is in contrast to the
previously proposed CO2RR mechanisms on other materials
(e.g., Cu and RuO2) where formate has been considered as a
dead end.5,41,52 We also identify that the HCOO* to
HCOOH* transformation step, which has a net barrier of
1.05 eV, is also a potential target for future studies to improve
the turnover frequency of the CO2RR catalytic cycle on Ni2P.
The HCOO*-mediated pathway proposed here is also
supported by the controlled experiment where formate was
used as the reactant instead of CO2,

68 and the same product
distribution was observed when CO2 was used as the reactant
(Figure 1a).
C−C Bond Formation through Formaldehyde Self-

Condensation. We investigated the possible branching from
H2CO* toward different intermediates, for example, CH3O*
and CH2OH*, to understand the pathway toward multicarbon
products. We considered the feasibility of the formation of

different C1 products, for example, CH3OH and CH4, as a
potential competitor to a C−C coupling step which would lead
to the multicarbon intermediates and products. We find that
the C1 product formation steps are associated with higher
kinetic barriers than the H2CO* self-coupling step (see Figure
S1 in Supporting Information). We find that H2CO* can
further reduce to CH2OH* which can in principle diffuse and
self-condensate; nevertheless, the CH2OH* diffusion is
associated with a higher kinetic barrier. Hence, we continue
to propose that the major self-condensation mechanism
responsible for multicarbon product formation is H2CO*
self-coupling. A detailed discussion involving the thermody-
namics and the kinetic barriers of the different possible
branches from H2CO* is given in Supporting Information (see
Section 2 of Supporting Information and Figure S1).
Previously, it has been shown that pathways involving the

H2CO* intermediate are predisposed to the formation of

Figure 3. Mechanism for H2CO* self-condensation. Binding geometries are shown for each intermediate. The color code is Ni (gray), P (purple),
C (brown), O (red), and H (green). The atomic radii of Ni and P are not drawn to scale in order to improve clarity. The energies of the
intermediates are relative to that of the first geometry on the left, where two H2CO* are close to one another at a Ni3 hollow site. For the overall
energy diagram of the CO2RR on Ni2P, see Figures 2b and 4.

Figure 4. Mechanism for multicarbon product formation via the formaldehyde (H2CO*) intermediate. Insets show the structures of the surface-
bound intermediates. The color code is Ni (gray), P (purple), C (brown), O (red), and H (green). The indices 1−6 correspond to the following
intermediates I: glycolaldehyde; II: glyceraldehyde; III: 2-hydroxy-2-propenal; IV: methyl glyoxal; V: 4-hydroxy-2-oxo-butanal; and VI: dihydro-2-
hydroxy-furanone.
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multicarbon products, due to the ease with which H2CO*
undergoes self-condensation via a C−C coupling reaction.42,92

We find that H2CO* diffusion also is assisted by H*
replenishment at the Ni3 hollow site (see Figure S1 and the
discussion in the Section 2 of Supporting Information). As
shown in Figure S1, H2CO* diffusion can prepare two H2CO*
in a favorable orientation for self-condensation (left-most
intermediate in Figure 3).
Next, we investigate the mechanism for H2CO* self-

condensation which includes four crucial steps. The first step
involves H transfer between two adjacent H2CO* (kinetic
barrier of 0.56 eV), which results in the formation of HCO*
and CH2OH* (Figure 3, shown as “Hydrogen Transfer I”). In
the second step, HCO* dissociates, forming CO* and H* at
the Ni−Ni and Ni−P bridging sites, respectively (Figure 3,
shown as “HCO* Dissociation”). In the third and key step of
H2CO* self-condensation, CO* and CH2OH* react to form a
C−C bond with a modest kinetic barrier of 0.40 eV (Figure 3,
shown as “C−C Coupling”). The H* stays at the Ni−P
bridging site, until the C−C coupling occurs (Figure 3, shown
as “C−C Coupling”); subsequently, it diffuses to the Ni−Ni
bridging site (Figure 3, shown as “Hydrogen Diffusion”). At
the fourth (final) step, the H* attaches to the keto group of the
(HOCH2−CO)*, producing glycolaldehyde ((HOCH2−
CHO)*) (Figure 3, shown as “Hydrogen Transfer II”). Once
all of the bonds in glycoaldehyde are formed, its C−C bond
rotates in order for the molecule to acquire a more stable
adsorption geometry (last step in Figure 3).
At this point, we would like to emphasize that surface H

affinity plays a crucial role in multicarbon product formation
by facilitating the C−C coupling step. More specifically, the
Ni2P(0001) surface provides multiple H-binding sites (Ni3
hollow, Ni top, Ni−Ni, and Ni−P bridging) that, when not
occupied by H or other adsorbates, can dehydrogenate
intermediates in the CO2RR, making it possible for two
H2CO* to undergo C−C coupling while avoiding steric
hindrance induced by their C−H groups. As per Figure 4, the
C−C coupling via H2CO* self-condensation is thermodynami-
cally downhill, suggesting that the formation of multicarbon
intermediates on Ni2P is more favorable than the formation of
C1 products (such as formate). Therefore, the PCET-assisted
rearrangement of HCOO*, discussed in the previous section
and shown in Figure 2b, ultimately leads to a thermodynami-
cally downhill C−C coupling step, further justifying our
proposed mechanism thus far.
Toward C3 and C4 Products. In this final section, we

investigate the pathway from glycolaldehyde to the exper-
imentally observed C3 and C4 products.

68 As we have already
explained in the preceding section, the first step (to form
intermediate I in Figure 4) involves C−C coupling via the self-
condensation of H2CO* to form glycolaldehyde ((HOCH2−
CHO)*), which is thermodynamically downhill by 0.41 eV.
For both H2CO* and glycolaldehyde, the −CO moiety is
parallel to the surface (similar to H2CO*, see the adsorbed
H2CO* in Figure 2b). This orientation exposes the aldehyde
center of glycolaldehyde* and makes it more susceptible to C−
C coupling with other H2CO* species. The C−C coupling
reaction of glycolaldehyde* and H2CO* is thermodynamically
downhill by 0.19 eV and produces glyceraldehyde* (inter-
mediate II in Figure 4). Next, glyceraldehyde* undergoes
water elimination, where either the terminal OH or the OH
attached to the central carbon atom takes part in the
elimination step. We find that the removal of the terminal

OH, which proceeds via syn intramolecular water elimination,
is 0.30 eV more thermodynamically favorable than the
elimination pathway involving the OH attached to the central
carbon of glyceraldehyde. Overall, the water elimination step is
thermodynamically downhill by 0.96 eV (shown as “Water
Elimination” in Figure 4) and results in the formation of 2-
hydroxy-2-propenal (intermediate III in Figure 4).
Once 2-hydroxy-2-propenal has formed, there is the

possibility of bifurcation in the reaction pathway (shown by
green dotted lines in Figure 4). Either the enol compound (III
in Figure 4) can undergo enol−keto tautomerization (shown
as “Enol−keto Tautomerism” in Figure 4) to form methyl
glyoxal (intermediate IV in Figure 4; experimentally observed
C3 product) or it can participate in further C−C coupling
(shown as “C−C Coupling III” in Figure 4). The enol-to-keto
transformation is downhill by 0.31 eV, whereas the formation
of C4 molecules (intermediates V and VI in Figure 4), via C−C
coupling and subsequent cyclization, is nearly thermoneutral
(Figure 4). In the final step, the cyclic C4 intermediate
(dihydro-2-hydroxy-furanone, intermediate VI in Figure 4)
forms 2,3-furandiol (experimentally observed C4 product,
Figure 1a) via aromatization. We note that the chemisorption
energies of 2,3-furandiol and methyl glyoxal are −0.91 and
−1.44 eV (see Table S2 in Supporting Information),
respectively. This implies that the desorption of 2,3-furandiol
likely is more feasible from a kinetic standpoint, which is in
agreement with the experiments by Calvinho et al. where more
2,3-furandiol was isolated than methyl glyoxal.68

The overall energetics of our proposed mechanism for the
CO2RR on Ni2P (see Figures 2 and 4) reveals that the
formation of multicarbon intermediates (especially C3 and C4)
via PCET-assisted HCOO* rearrangement is strongly
exergonic, thus elucidating why C1 is a minor product, and
C3 and C4 molecules are the major products.68 We emphasize
that the first hydride transfer in CO2 activation is one of the
key rate-limiting steps, and we propose this as a vital target to
improve the catalytic activity in further studies. As the thermal
hydride transfer is not amenable to acceleration by over-
potential, our results suggest that active site engineering to
simultaneously reduce the energy penalty associated with H*
migration from the Ni3 hollow site to the Ni top site69 and
CO2 bending

61 could potentially reduce the kinetic barrier for
hydride transfer. Finally, we propose that the stabilization of
the co-adsorbed H*/HCOO* intermediate is another
promising strategy to facilitate the transformation of
HCOO* to HCOOH*, as this should boost selectivity toward
the formation of multicarbon products. To this end, doping
and strain could be exploited to reduce the barriers for surface
hydride transfers93 on Ni2P and optimize the binding of these
crucial intermediates.

■ CONCLUSIONS
We demonstrate that both C1 (formate) and multicarbon
product (methyl glyoxal and 2,3-furandiol) formation proceed
through the HCOO* intermediate on Ni2P. The mechanism
proposed here provides an alternative route toward multi-
carbon product formation, as it predicts a pathway that does
not involve a HOCO* intermediate. Such a pathway
successfully accounts for the high selectivity (and low activity)
toward C3 and C4 products, observed in previous experi-
ments.68 Our results identify the optimization of CO2*
bending and H* migration from Ni3-hollow to Ni-top site in
the CO2 activation transition state and HCOO* to HCOOH*

ACS Catalysis pubs.acs.org/acscatalysis Research Article

https://doi.org/10.1021/acscatal.1c03639
ACS Catal. 2021, 11, 11706−11715

11711

https://pubs.acs.org/doi/suppl/10.1021/acscatal.1c03639/suppl_file/cs1c03639_si_002.pdf
https://pubs.acs.org/doi/suppl/10.1021/acscatal.1c03639/suppl_file/cs1c03639_si_001.zip
https://pubs.acs.org/doi/suppl/10.1021/acscatal.1c03639/suppl_file/cs1c03639_si_002.pdf
pubs.acs.org/acscatalysis?ref=pdf
https://doi.org/10.1021/acscatal.1c03639?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


transformation step, as promising targets for improving the
catalytic activity. We find that the strong H affinity of the Ni2P
surface and the availability of multiple H-binding sites provide
a local reservoir of H* which acts as a reagent source for
reduction and hydrogenation of CO2RR intermediates.
Furthermore, surface reconstruction via H adsorption in the
hollow site creates a thermodynamic driving force for the
intermediates such as HCOO* and H2CO* to proceed toward
C−C coupling. We thus propose that the H affinity of the
surface can be used as a knob to influence the energetics of the
CO2RR. We find that thermal steps such as surface hydride
transfer, surface hydrogenation, diffusion, and self-condensa-
tion reactions are integral parts of the electrochemical CO2 RR
on Ni2P. These findings imply that simultaneous engineering
of the thermal and electrochemical steps can open up novel
material design strategies for more active CO2RR catalysts with
high selectivity toward multicarbon products.
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