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Abstract

Thermochemical water-splitting (TCH) based on 2-step thermal redox cycles in metal oxides is a promising
approach to generating H2, but state-of-the-art (SOTA) CeO2 has several practical limitations, which has motivated
continued materials discovery efforts in this field. Here, we improve upon a SOTA defect graph neural network
(dGNN) surrogate model’s oxygen vacancy predictions and combine them with Materials Project phase diagrams
to down-select and discover structurally diverse, experimentally known metal oxides whose TCH performance
was previously unknown. Amongst twelve candidates selected based on our high-throughput screening and
down-selection criteria, we achieved ∼ 80% accuracy in identifying materials with stable redox cycling and hydrogen
production in stagnation flow reactor water-splitting experiments. Closer to 100% accuracy can be achieved if
higher-accuracy, hybrid DFT-predicted vacancy formation energies were computed and used in lieu of the most
uncertain dGNN-based screening predictions, as they correct false positives to true negatives. Notably, two
discovered candidates, Sr3PrMn2O8 and Ba2Fe2O5, display hydrogen yields greater than CeO2 under specific redox
conditions. These results demonstrate our ability to computationally predict and experimentally validate promising
candidate TCH materials that have the potential to compete with CeO2.
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Introduction

Two-step redox of metal oxides via thermochemical
(TCH) water-splitting1,2 is widely considered a promising
route for hydrogen production that, unlike electrolysis-
based pathways,3 does not depend primarily on redirect-
ing electricity from the grid for fuel production. A specific
subclass of these two-step cycles that use non-volatile,
non-stoichiometric metal oxides as active material oper-
ate via a thermochemical process. High temperatures ac-
companied by low oxygen partial pressure reduce a metal
oxide host by introducing oxygen vacancy defects, and
re-oxidation of the material by water vapor at lower tem-
peratures produces hydrogen.

MOx → MOx−δ +
δ

2
O2 (red.)

MOx−δ + δH2O → MOx + δH2 (ox.)
(1)

TCH water-splitting metal oxides have been discovered
by experimental trial-and-error, intuition, or modeling-
informed studies,4–8 but CeO2 remains the best mate-
rial to date9 and has reached the pilot-scale “large pro-
totype" stage. This is primarily due to its exceptionally
large reduction entropy and ability to re-oxidize in high
H2/H2O ratios,10 which simplifies practical reactor design
considerations, i.e., by alleviating costly gas separations
and by reducing the energy penalty associated with feed-
ing a large excess of water vapor at high temperature.
However, CeO2 is not without its own drawbacks: it re-
quires extremely high reduction temperatures (≳1500 °C)
to achieve sufficiently high oxygen off-stoichiometry and
hydrogen yields, which in turn complicates practical reac-
tor design considerations such as material stability, heat
source, etc.

This has motivated an intense push for computational
materials discovery,11–15 thermodynamic modeling,16–19
and subsequent experimental synthesis4–8 of alternative
metal oxide phases with appropriate thermodynamics for
TCH water-splitting. At the materials discovery stage,
the key down-selection criteria for a promising TCH metal
oxide relate to (1) its oxygen vacancy defect formation en-
ergies and (2) the overlap of the host structure’s oxygen
chemical stability window with typical TCH redox con-
ditions. While additional material properties should in
principle be considered and optimized (e.g., oxygen defect
kinetics, thermal/melt stability, etc.), these two proper-
ties provide the most tractable down-selection criteria for
computational screening that can be used to inform high-
throughput TCH materials discovery.

In this work, we utilize a defect graph neural network
(dGNN) surrogate model, first demonstrated in Ref. [15]
and trained on an expanded set of density functional the-
ory calculations (DFT) herein, for predicting oxygen va-
cancy formation energies. Materials Project (MP)20 facil-
itated phase diagram construction was then used to pre-
dict the oxygen chemical potential stability range of can-
didate materials and to quantify its overlap with the oxy-

gen chemical potential range (redox conditions) of a typ-
ical TCH process. This permits high-throughput screen-
ing of the 10,000s of known and hypothetical metal oxides
in the MP for their oxygen vacancy defect formation en-
ergies and host stability, of which only ∼100 candidates
are predicted to meet our strictest down-select criteria,
representing a downsizing of roughly two orders of mag-
nitude.

To test the robustness of our computational predic-
tions for defect thermodynamics and host stability and
their down-selection criteria, twelve metal oxides from
the screening performed herein were chosen for synthe-
sis and experimental validation through thermogravimet-
ric analysis (TGA) and stagnation flow reactor (SFR)
water-splitting experiments. Overall, the computational
success at predicting TCH water-splitting activity is ex-
cellent with an ∼ 80% true positive rate. Here we de-
fine a material as a "positive" if it passes our experi-
mental screening protocol by displaying reversible non-
stoichiometry (> 50% ∆δ that of CeO2 under similar
conditions) in the TGA experiments for at least 3 re-
dox cycles and stable hydrogen production in the SFR
water-splitting experiments for at least 5 redox cycles.
If we exclude materials that fail by mechanisms outside
our down-selection criteria (i.e, insufficiently high melting
temperature) and further validate uncertain dGNN pre-
dictions of vacancy formation energies with hybrid DFT,
the true positive rate rises to 100%. Among true positive-
predicted TCH water-splitters whose SFR re-oxidation
was performed in pure steam, notably high performance
is achieved by Sr3PrMn2O8 and Ba2Fe2O5, whose hydro-
gen yields are greater than that of CeO2 when cycled
under certain redox conditions. These materials should
therefore be considered high-priority candidates for future
experiments under more challenging and extended cycling
conditions, as well as for further computationally-guided
performance optimization via material modification and
substitutions.

Results and Discussion

Our discovery workflow consists of four major steps.
First, we (re)train an updated dGNN model for predicting
vacancy formation energies. Second, we high-throughput
screen vacancy formation energies across the known metal
oxide space from MP and combine this information with
first principles host stability predictions provided via MP.
This permits down-selection of TCH candidates based on
the primary criteria that indicate their predicted suitabil-
ity for TCH. Third, as a preliminary experimental screen,
TGA experiments determine whether selected oxides can
reversibly cycle in thermochemical redox. Fourth, for
those that pass the TGA screening, SFR experiments
demonstrate whether a material can split water during
thermochemical redox. Additional methodological details
on DFT calculations, model architecture and training,
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synthesis, and TGA/SFR testing are included in the Sup-
plementary Information (SI).

dGNN training and validation
We use the dGNN modeling approach detailed in Ref. [15]
for predicting neutral vacancy (VX) formation energies,

∆̂HVX,i = fdGNN(Ch, i; θ), (2)

where Ch denotes the perfect (relaxed) host crystal struc-
ture, i the index of the crystallographic site hosting the
vacancy, X the elemental identity of that site, and θ the
learned model weights. Relying only on the host crystal
structure as input, this surrogate model’s inference pre-
dictions are of trivial computational cost (see Supplemen-
tary Section 4) compared to those of first-principles based
predictions, ∆HV,i, based on DFT calculations that re-
quire large (≳100 atom) supercell relaxations for each
unique site in the crystal structure. The neutral vacancy
formation enthalpy ∆HVX,i

for species X (i.e., cation or
oxygen) is defined as follows:

∆HVX,i = E(VX,i)− Ebulk + µref
X . (3)

Here, E(VX,i) is the total energy of a supercell contain-
ing the neutral vacancy VX,i; Ebulk is the total energy of
the pristine, defect-free supercell; and µref

X is the refer-
ence chemical potential of the removed element, taken
as the fitted elemental reference energies (FERE),21,22
µref
X = µFERE

X , which improve the description of thermo-
chemical properties of oxides in DFT calculations.23 See
Supplementary Section 1 for additional details on DFT
settings.21,22,24–33

Our previous training data set consisted of neutral oxy-
gen and cation vacancies in binary and ternary metal ox-
ides spanning a diverse chemical and structural space. In
this work, we augment that training data with (1) the
validation data from the same study, which again con-
sists of neutral oxygen and cation vacancy formation en-
ergies, but for systems containing four or more elements
and solid solution metal oxides;5,7,19 (2) the ABO3 per-
ovskite dataset of Wexler et al.;12 and (3) additional bi-
nary oxides and a handful of ternary oxides spanning an
even wider chemical space computed in this work (see
Supplementary Section 1).

For this augmented dataset, the number of structures
containing a given cation is shown in Figure 1a. The
training data’s lack of uniform chemical coverage neces-
sitates careful cross-validation (CV) to obtain a reason-
able expectation estimate of model accuracy when high-
throughput screening unseen structures for materials dis-
covery.34 We perform nested (K,L)-fold CV, with K = 10
and L = 10, described in detail in Supplementary Section
5. Here, ⟨MAE⟩ and ⟨R2⟩ denote the model’s expected
mean absolute error (MAE) and coefficient of determina-
tion (R2), which can be delineated by whether only oxy-
gen vacancies, ∆HVX=O

, or cation vacancies, ∆HVX=Cation
,

are considered in the expectation (Table 1). Note that
our MAE for the neutral oxygen vacancy is comparable
to that of Kumagai et al35 (MAE ∼ 0.34 eV), who uti-
lized a different surrogate modeling approach, DFT func-
tional, and possible training elements (i.e., Mn, Fe, Ni,
and Co were avoided but are of important considerations
in TCH).

CV split criteria Vac. type ⟨MAE⟩ [eV] ⟨R2⟩

Structure
VX=All 0.55 0.91
VX=O 0.38 0.84
VX=Cation 0.81 0.86

Element
VX=All 1.09 0.84
VX=O 0.75 0.64
VX=Cation 1.64 0.74

Table 1: For structure-wise and element-wise nested CV
splits, the expected MAE and R2 of the model in pre-
dicting neutral vacancy formation energies, delineated by
O-only, cation-only, or all vacancy types.

Two different train/test splitting criteria are consid-
ered: structure-wise (whereby all defects in a set of host
training structures are held out for the test set) and
element-wise (whereby all defects in any structure con-
taining a specific cation type are held out for the test
set). On unseen structures, our model achieves a suffi-
ciently low error (⟨MAE⟩ ≲ 0.5 eV for ∆HVO) needed
for quantitatively reliable TCH materials discovery pre-
dictions. While still ∼ 2x greater than that of structure-
wise splits, the models’ expected ⟨MAE⟩ of ∼ 0.75 eV
(and ⟨R2⟩ ∼ 0.64) for ∆̂HVO

and element-wise splits still
indicates semi-quantitative predictive accuracy. In other
words, the dGNN’s generalization capabilities are suffi-
cient that ∆HVO

can be (roughly) approximated for com-
pounds containing a cation that has little representation
in the training data. Nonetheless, for poorly represented
cations in our training data (deep purple elements in Fig-
ure 1a), we expect reduced accuracy, comparable in the
best-case to the element-wise ⟨MAE⟩ in Table 1.

Parity plots of all test set predictions from the nested
CV are shown in Figure 1(b,d), where (b) corresponds
to models trained on structure-wise splits and (d) corre-
sponds to models trained on element-wise splits. Each
outer-fold test set prediction is derived from an ensemble
average of inner-fold model predictions (see Supplemen-
tary Section 5), and the standard deviation of this ensem-
ble of predictions, σ(∆̂HV,i), is a heuristic metric for its
uncertainty. Figure 1(c,e) shows that, while the absolute
error (AE) of individual predictions is not well correlated
with σ, the expectation value of AE within a given bin of
σ is well approximated by σ, and especially so for large
σ. Therefore, flagging vacancy predictions with high un-
certainty (high σ) can be a useful strategy on average
for avoiding experimental validation of materials that are
poorly predicted by the dGNN.
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Figure 1: (a) Periodic table color-coded by the number of
structures in the training data containing the designated
cation. (b,d) Respective structure-wise vs. element-wise
nested CV parity plots showing each test set example’s
ensemble averaged prediction. (c,e) Respective structure-
wise vs. element-wise nested CV showing each test set ex-
ample’s prediction error vs. the uncertainty metric (blue
circles), expectation of prediction error within a given σ
bin (red line), and y = x (cyan line).

MP screening

We queried all metal oxides in the Materials Project
2020 (MP20) database,20,36 excluding any structures with
cations outside our training data (Figure 1a). Three key
quantities are then computed for remaining candidates to
aid down-selection for experiments.

First, oxygen vacancy formation energies of all oxygen
sites in a given host are computed, {∆̂HVO,i}i∈Ch

, and
their range is extracted, rng(∆̂HVO

). The target vacancy
defect formation energy range required for TCH oper-
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Figure 2: (a) Periodic table color-coded by ⟨{Ū}MP⟩
for all MP screened structures containing the indicated
cation. (b) Cumulative distribution function (CDF) for
the # of MP metal oxides with ϕ̄TCH

H . The black line rep-
resents all queried MP20 compounds, while colored lines
represent the CDF for the subset of compounds contain-
ing a given cation listed on the right (sorted from top
to bottom by the number of candidates with ϕ̄TCH

H = 0,
listed in parentheses). (c) The defect vs. host stability
trade-off plotted as the minimum and maximum oxygen
chemical potential (left and right subplots, respectively)
at which a material is stable vs. the minimum oxygen va-
cancy formation energy. The color-bar denotes structure
counts.

ation is typically considered to be between ∆HTCH
VO

=
[2.3, 4.0] eV. At the cost of increasing false positives, this
range is judiciously selected to reduce false negatives aris-
ing from underlying dGNN prediction errors, systematic
errors in DFT, and the omission (necessary for high-
throughput DFT) of more complicated but possibly non-
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negligible contributions to the free energy of vacancy for-
mation.10 Increased configurational entropy of the defect
state under TCH conditions will occur for materials where
rng(∆̂HVO

) is small and within ∆HTCH
VO

. However, ma-
terials with only one defect in the TCH target are still
considered, provided there are no defects below the lower
bound, i.e., min(∆̂HVO) ∈ ∆HTCH

VO
.

Second, for a given oxygen chemical potential,

µO = µref
O +∆µO, (4)

we compute each structure’s grand canonical energy
above the hull, ϕH , using the MP20-provided formation
energy mixing scheme. This yields the chemical potential
range,

∆µϕH≤Θ
O = [∆µO|ϕH(∆µO) ≤ Θ], (5)

for which the material is within some threshold, Θ, of
the grand canonical hull energy. The material should
be stable (ϕH = 0) in a ∆µO range that intersects or,
preferably, spans the entire range of typical TCH oper-
ating conditions, taken here as ∆µTCH

O = [−3.0,−2.5]
eV.37,38 Nonetheless, MP20-predicted metastable materi-
als can still be considered (especially those that are ex-
perimentally known). To facilitate down-selection of can-
didates for experiments, we therefore compute a scalar
value, the average ϕH across ∆µTCH

O ,

ϕ̄TCH
H =

∫
∆µTCH

O
ϕH(∆µO)d∆µO∫

∆µTCH
O

d∆µO
, (6)

where materials with ϕ̄TCH
H closer to 0 are more highly

prioritized.
Requiring a lower ϕ̄TCH

H reduces the number of poten-
tial candidates drastically (by several orders of magni-
tude when requiring ϕ̄TCH

H = 0), and this reduction is
chemistry dependent (Figure 2b). For materials any-
where on the grand canonical hull, i.e., ∆µϕH≤Θ

O ̸= ∅,
Figure 2c shows the minimum ∆µO at which they are
stable vs. the minimum vacancy formation energy from
the dGNN screening. Therefore the screening recovers,
as one might expect, a reasonable correlation between de-
fect stability and the minimum oxygen chemical potential
at which a stable host structure becomes unstable, i.e.,
decomposes to more reduced metal oxide(s). This nat-
urally occurring compensation effect, unfortunately for
TCH discovery, imparts the large majority of screened
metal oxides with min(∆̂HVO) that is too high for the re-
quired TCH stability range. Specifically, for those materi-
als with min(∆̂HVO

) in the appropriate TCH range, most
are not stable enough under reducing conditions, i.e.,
min(∆µϕH=0

O ) > −2.5 eV. This motivates future investi-
gation of SOTA generative machine learning approaches
to crystal structure prediction, such as conditioned diffu-
sion models,39 to expand the possible space of TCH oxide
candidates beyond the limitations of currently known ma-
terials space.

Third, we average our heuristic uncertainty metric
across all oxygen defects in a given host structure, Ū =
⟨{σ(∆̂HVO,i)}i∈Ch

⟩. Since large values are well correlated
with large prediction errors, we can additionally avoid
experimental validation efforts on materials with large
Ū to reduce the likelihood of false positives in the MP
screening with the current dGNN models. Unsurprisingly,
if we further average Ū over all MP structures contain-
ing a given cation, ⟨{Ū}MP⟩, the largest uncertainties are
broadly associated with the cations that are the least well
represented in the training data (Figure 2a).

Final candidate selection

Table 2 lists materials that were selected from the MP
screening for experimental validation and their predicted
properties for our down-selection criteria. We addition-
ally state the results of our experimental validation pro-
tocol: whether they successfully pass the TGA redox cy-
cling test, whether they successfully pass the SFR water-
splitting cycling test, and whether our down-selection
criteria provided a true/false positive/negative classifica-
tion (TP/FP/TN/FN) of the water-splitting capability.
Specifically, a "positive" is assigned if a material displays
reversible non-stoichiometry (> 50% ∆δ that of CeO2

under similar conditions) in the TGA experiments for at
least 3 redox cycles and stable hydrogen production in
the SFR water-splitting experiments for at least 5 redox
cycles.

Only materials with 2.3 < min(∆̂HVO
) < 4.0 eV,

min(∆µϕH=0
O ) < −2.5 eV, and Ū < 0.75 eV were con-

sidered. The exceptions are TiNb2O7 and Ba2CaMoO6,
which were selected as examples that do not meet our va-
cancy formation criteria (i.e., we tried to validate a true
negative prediction for water-splitting ability). Since on
the order of one hundred candidates still fulfill these cri-
teria, further prioritization was performed based on ex-
perimental synthesizability and handling considerations,
including demonstrated synthesis and stability in liter-
ature reports, non-hazardous precursors, etc. Note the
abundance of Ba-containing oxides in our selected can-
didates is partly reflective of their over-representation
in MP candidates satisfying our strictest host stability
down-select criteria (Figure 2b), while additional selec-
tion criteria based on chemical intuition are provided in
the SI. X-ray diffraction (XRD) characterization and ver-
ification of the intended as-synthesized phases is shown
in the SI, as well as the post-TGA cycled XRD.

TGA redox cycle screening

First, each material was screened using TGA to assess
its suitability for flow reactor experiments. The mass
change of each material was recorded over three redox
cycles. Oxidation conditions for each measurement were
consistently set to 1000 ◦C (Tox) and an oxygen partial
pressure (pO2,ox) of 10−0.76 atm. Reduction tempera-
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Table 2: Down-selected, synthesized, and tested materials’ MP identifier (MPID), chemical formula, and screening
down-selection criteria of rng(∆̂HVO), Ū , ϕ̄TCH

H , and ∆µϕH=0
O . TGA = {Yes,No} indicates whether reversible non-

stoichiometry (> 50% ∆δ that of CeO2 under similar conditions) in the TGA experiments was observed for at least 3
redox cycles. SFR = {Yes,No} indicates whether the material exhibited stable redox cycling in SFR water-splitting
experiments after five cycles. Rating = {TP,FP,TN,FN} indicates a true/false postive/negative classification of our
down selection criteria’s prediction of successful water-splitting capabilities in the SFR. DFT = {TP,FP,TN,FN}
indicates the Rating when hybrid DFT predictions (see Table 4), rather than dGNN, for rng(∆̂HVO) are used.

MPID Formula rng(∆̂HVO
) Ū ϕ̄TCH

H ∆µϕH=0
O TGA SFR Rating DFT

[eV] [eV] [eV/at] [eV]
mp-19154 BaFe2O4 3.3 - 3.6 0.1 0.038 [−2.6,−0.9] Y†,§ Y TP –
mp-1196071 Ba2Fe2O5 2.9 - 3.8 0.1 0.0 [−3.1,−0.9] Y†,§ Y TP –
mp-1228690 Ba6La2Fe4O15 3.6 - 4.5 0.3 0.0 [−3.3,−0.8] Y Y TP –
mp-1228552 Ba5SrLa2Fe4O15 3.7 - 4.4 0.3 0.0 [−3.3,−0.6] Y Y TP –
mp-1198058 Ba3YFe2O7.5 3.8 - 4.5 0.4 0.0 [−3.3,−0.5] Y Y TP –
– Ba2.5Sr0.5YFe2O7.5

∗ – – – – Y Y TP –
mp-1218451 Sr3PrMn2O8 2.4 - 3.3 0.5 0.011 [−2.8,−1.5] Y Y TP –
mp-19403 Ba2CaMoO6 4.5 0.6 0.0 [−3.7,−0.0] N† – TN –
mp-18967 Ba2CoMoO6 3.6 0.6 0.0 [−3.1,−1.5] N† – FP –
mp-769971 BaGa4O7 3.5 - 4.1 0.7 0.0 [−3.9,−0.0] N – FP TN
mp-17914 CaGa4O7 3.8 - 4.3 0.5 0.0 [−3.9,−0.0] N – FP TN
mp-759307 TiNb2O7 4.6 - 5.7 0.3 0.018 – – – TN –
∗ Not in MP, inferred by chemically intuited substitution analogous to mp-1228552.
† Indicates melting instability before the maximum reduction temperature of 1400 °C
§ Successful TGA redox cycling still achieved at a milder reduction temperature < 1400 °C
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Figure 3: Reversible oxygen non-stoichiometry, expressed as ∆δ vs. time in a TGA redox screening experiment for
(a) Ba3YFe2O7.5, (b) Sr3PrMn2O8, and (c) Ba2Fe2O5 respectively. Theoretical results for CeO2 are also reported
as colored dashed lines. The temperature profiles and pO2s are indicated in the upper subplots. (d) The average
maximum ∆δred obtained from the last two redox cycles for screened materials under various reduction conditions.
Theoretical ∆δred for CeO2

40 are also included.

tures (Tred) varied between 1250 and 1400 ◦C depending
on the thermal stability of the material, which was eval-
uated in a furnace ex-situ. The oxygen partial pressure
(pO2,red) was set to either 10−4.5 or 10−3.5 atm, based
on the capability of the instrument used. The first redox

cycle was excluded from analysis due to the irreversible
mass change resulting from "burn in effects" likely related
to particle coarsening. Reversible mass changes in the re-
maining two cycles were attributed to changes in oxygen
non-stoichiometry and can be expressed as the change (∆)
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Figure 4: H2 and O2 production rates from the fifth and final water-splitting cycle of an SFR experiment for (a)
Ba3YFe2O7.5, (b) Sr3PrMn2O8, and (c) Ba2Fe2O5 respectively. (d) Average H2 yield obtained from the last four
water-splitting cycles for screened materials and CeO2 under various Tred.

in δ by assuming ∆δ reaches zero upon equilibration of
the oxidation step of the second cycle to enable compar-
isons between materials with varying amounts of oxygen
(see SI for details).

Figure 3a-c illustrates the oxygen non-stoichiometry re-
sults for three notable materials that passed the TGA
screening (i.e. exhibited reversible mass changes and a ∆δ

>50% than that of CeO2), Ba3YFe2O7.5, Sr3PrMn2O8,
and Ba2Fe2O5. Theoretically predicted oxygen non-
stoichiometries for CeO2,40 using the identical redox con-
ditions at which each material was measured, are shown
as dashed colored lines for comparison in each subplot.
The average maximum ∆δ during the last two reduc-
tion cycles for each material passing the TGA screening
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is reported in Figure 3d, along with the theoretical re-
sults for CeO2. The reduction of Ba3YFe2O7.5 resulted
in a ∆δ similar to that of CeO2, while Sr3PrMn2O8 and
Ba2Fe2O5 exhibited ∼50% and ∼500% larger ∆δ, re-
spectively, than CeO2 under the same conditions. Fur-
thermore, visual inspection of the rate at which ∆δ
approaches zero indicates that the (re)oxidation kinet-
ics of Sr3PrMn2O8 and Ba2Fe2O5 are notably faster
than Ba3YFe2O7.5. Within the 4 self-similar com-
pounds based on monoclinic Ba3YFe2O7.5 and hexagonal
Ba6La2Fe4O15 structures, the two monoclinic materials
yield ∆δ values > 2x higher than the hexagonal coun-
terparts. Sr substitution does not appear to impact ∆δ
within the monoclinic structure, while having a somewhat
detrimental effect on hexagonal Ba5SrLa2Fe4O15. TGA
cycling data for all materials are shown in the SI, in-
cluding for materials with large irreversible mass changes
(Ba2CoMoO6 and Ba2CaMoO6), which are likely due to
cation volatility and/or melting instability. The materi-
als that did not pass the TGA screen were not studied in
the SFR.

SFR water-spitting screening

The TCH performance of any material passing the TGA
screening was examined in a stagnation flow reactor
(SFR), the details of which are given elsewhere.5,41,42
Briefly, the SFR operates at sub-ambient pressure (0.1
atm) and is equipped with electromechanical systems for
control of gas composition and mass flow, reactor back
pressure, and process temperature. Material oxidation
temperature (Tox) is held fixed by placing the SFR into
a tube furnace. Materials are rapidly heated at a rate of
∼15 °C/s from Tox to the thermal reduction temperature
(Tred) by focusing the radiant energy of a near-infrared
diode laser normal to the sample surface. Gas compo-
sition (and thus hydrogen and oxygen production rate,
ṅH2

and ṅO2
) is measured downstream of the SFR by a

mass spectrometer (with additional details presented in
the SI). Prior to water-splitting experiments, each sample
was first subjected to five redox cycles under a constant
PO2

= 1.97 · 10−4 atm to verify that it could in fact ther-
mochemically cycle in a stable and consistent manner and
remove any contributions from burn-in effects or sinter-
ing from the capacities measured during water-splitting
redox.

Then, each sample underwent five water-splitting cy-
cles according to conditions listed in Table 3. Under these
conditions, samples typically reach stable cycling behav-
ior within five cycles. The H2 yield, nH2

, is calculated
by integrating ṅH2

over tox. The ṅH2
and ṅO2

rates dur-
ing the last SFR water-splitting cycle are shown in Fig-
ure 4a-c for Ba3YFe2O7.5, Sr3PrMn2O8, and Ba2Fe2O5,
while the same data for each material is presented in the
SI. The average atom-normalized molar hydrogen yield
measured over the last four cycles for all materials, at
various Tred, is summarized in Figure 4d. Each material

that passed the TGA screening test maintains a measur-
able hydrogen yield after five cycles under the conditions
investigated, with the caveat that Tred < 1400 °C must
be applied for BaFe2O4 and Ba2Fe2O5 due to their melt
stability issues at 1400 °C.

Table 3: Thermodynamic cycle (reduction and oxidation)
conditions used to evaluate TCH water-splitting perfor-
mance of screened materials in the SFR.

Condition Value

R
ed

uc
ti

on Temperature (Tred) See Figure 4d

O2 Partial Pressure (PO2,red) 9.87 ·10−7 atm

Time (tred) 5 min

O
xi

da
ti

on

Temperature (Tox) 850 °C

H2O Partial Pressure (PH2O,ox) 3.95 ·10−2 atm

H2 Partial Pressure (PH2,ox ) 0 atm

Time (tox ) 15 min

Among the screened materials, two are of particu-
lar interest, namely Sr3PrMn2O8 and Ba2Fe2O5. For
Sr3PrMn2O8, the H2 yield is 30% greater than that of
CeO2 for the same Tred = 1400 °C. Meanwhile, Ba2Fe2O5

displays a H2 yield that is slightly greater than CeO2 un-
der the lowest Tred of 1250 °C examined in this work. The
promising performance in these low Tred conditions moti-
vates future work to modify the material via alloying to
melt stabilize the material at higher temperatures and to
improve material performance by enhancing defect con-
centration to increase H2 production capacity. Further-
more, these materials exhibit promising kinetics with a
significant amount of oxidation/reduction occurring be-
tween 15 and 5 mins. However, further kinetic studies
are need to quantify rates under controlled sample parti-
cle size, surface area, and surface morphology. Finally, we
note that CeO2 is unique in its ability to split water at a
high PH2,ox/PH2O,ox ratio; while beyond the scope of this
initial screening paper, re-examination of these materials
under such conditions, especially for the promising mate-
rials like Sr3PrMn2O8 and Ba2Fe2O5, will be probed in
future work.

DFT for uncertain screening predictions
Ga and Pr are among the least-sampled cations in our
augmented training dataset. Due to their relatively
higher Ū (Table 2) and the much larger expected MAE
in element-wise CV (Table 1), we can reasonably ex-
pect the dGNN predictions for {Ca,Sr,Ba}Ga4O7 and
Sr3PrMn2O8 to exhibit higher error than other screened
materials. In such cases, re-computing ∆HVO with DFT
can provide a much higher-fidelity (albeit much higher-
cost) prediction and possibly correct dGNN-predicted
FPs to DFT-predicted TNs. We report min(∆HVO

) for
{Ca, Sr,Ba}Ga4O7 (as well as some substituted variants)
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and Sr3PrMn2O8 in Table 4. Both the generalized gra-
dient approximation of Perdew, Burke, and Ernzerhof
(PBE-GGA)27 and the higher fidelity hybrid exchange-
correlation functional of Heyd, Scuseria, and Ernzerhof
(HSE06) were used,31,32 with additional details in Sup-
plementary Section 1. As with the training data for the
dGNN model, formation energies were calculated using
Equation (3).

Table 4: DFT-computed min(∆HVO
) for selected screen-

ing candidates from this study, including hypothetical
In→Ga substituted variants of {Ca,Sr,Ba}Ga4O7.

Material DFT Method min(∆HVO) [eV]

CaGa4O7
HSE, α = 0.27 4.17
PBE-GGA 3.78

SrGa4O7
HSE, α = 0.32 4.03
PBE-GGA 3.59

BaGa4O7
HSE, α = 0.30 3.91
PBE-GGA 3.50

CaIn4O7
HSE, α = 0.27 2.94
PBE-GGA 2.60

SrIn4O7
HSE, α = 0.32 3.02
PBE-GGA 1.49

BaIn4O7
HSE, α = 0.30 2.38
PBE-GGA 1.93

Sr3PrMn2O8 PBE-GGA 2.62

Beginning with {Ca,Sr,Ba}Ga4O7, we calculate ∆HVO

with both PBE-GGA and HSE. Consistent with the
dGNN model, the screening predictions (Table 2) are
within the expected MAE of the PBE-GGA calculations.
However, we find that the HSE-predicted formation ener-
gies are systematically larger than both dGNN and PBE-
GGA (origins of this discrepancy are discussed in more
details in the SI). The HSE-predicted min(∆HVO

) are
approximately equal to or above our 4 eV threshold to
be considered candidates for TCH applications, so re-
computing with HSE (but not GGA) would have cor-
rected the dGNN-predicted FP to a TN before attempted
experimental validation.

Noting that the formation energy decreases with in-
creasing A-site cation size (i.e., from Ca to Ba), we also
considered whether substitution on the B-site might re-
sult in systems with more modest formation energies. In-
deed, with further HSE calculations, we find that the
In-containing analogues have formation energies that are
significantly lower in energy. Notably, the min(∆HVO

) in
BaIn4O7 is more than 1.5 eV lower in energy than that
of BaGa4O7, thereby making vacancy formation likely
much more favorable for TCH applications. CaIn4O7

and SrIn4O7, on the other hand, have formation energies
well within the desired range. Unfortunately, while the
Ga-containing compounds are thermodynamically stable

with respect to limiting phases, the In-containing systems
are not (see Supplementary Information); thus, these
lower formation energies are not likely to be realized in
practice. Nevertheless, these results suggest that In al-
loying in {Ca,Sr,Ba}Ga4O7 may be a promising strategy
to reduce ∆HVO , providing that sufficient substitution of
In for Ga can be realized.

For Sr3PrMn2O8 we find min(∆HVO) = 2.62 eV, which
is slightly larger than the dGNN prediction but within
both the expected model error and the range of for-
mation energies targeted for TCH down-selection. As
a result, Sr3PrMn2O8 is a TP when using either DFT
or dGNN predictions, despite the lack of data on Pr-
containing compounds. Considering that Sr3PrMn2O8

and related materials are candidates for electrodes in solid
oxide cells,43 it is unsurprising that formation energies are
relatively modest.

As a final note, it is important to recognize that, in
materials with a band gap, defects can be charged, de-
pending on the position of the Fermi level relative to the
band edges. VO defects are commonly ionized in the +2
or +1 charge states (V +2

O or V +1
O , respectively), particu-

larly for Fermi level positions close to the valence band
maximum (VBM). Here, for the purposes of our screen-
ing approach, we focus solely on the neutral charge state,
V 0
O; however, we have confirmed that, in each material

in the {Ca,Sr,Ba}Ga4O7 family, V 0
O is in fact the lowest

energy VO species at typical Fermi level positions. We
include a full analysis to support this point in the SI. For
Sr3PrMn2O8, which does not have a band gap, all defects
have neutral charge states. Therefore, our reported val-
ues here for neutral vacancies are representative of true
∆HVO .

Conclusions

A comprehensive TCH materials down-selection was per-
formed, combining vacancy defect formation energy pre-
dictions from dGNN, thermochemical redox stability
range calculated from MP20, and chemical intuition to
target high priority phases for experimental validation.
Building upon previous work, the dGNN was trained on
additional oxide defect data (generated in this work) in
less-conventional TCH chemistry spaces, expanding the
diversity of compounds that could be targeted. Using the
dGNN predicted vacancy formation energies, ∼80% accu-
racy was achieved in predicting successful two-step TCH
metal oxides, which we define as exhibiting reversible,
stable, and cyclable hydrogen production in a stagnation
flow reactor under at least five redox cycles.

For less certain dGNN screening predictions, additional
DFT validation calculations were performed to predict
vacancy formation energies. Corresponding to the level
of theory at which the dGNN was trained, some PBE-
GGA DFT calculations did not correct dGNN-predicted
false positives; i.e., both the dGNN- and DFT-predicted
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vacancy formation energy were within the target down-
select range, but no oxygen off-stoichiometry could be
observed in TGA screening. However, hybrid HSE cal-
culations corrected these false positives to true negatives;
i.e., the vacancy formation energies were shown to be too
high, explaining the lack of off-stoichiometry observed
in the TGA screening. Two materials from the experi-
mental screening failed due to factors outside the scope
of our computational screening capabilities, namely ther-
mal stability issues like melting and (hypothesized) cation
volatility leading to irreversible mass loss at TCH oper-
ating temperatures.

Beyond simply considering whether down-selected can-
didates could cycle and produce hydrogen in our SFR
screening, two particularly interesting materials were
identified based on their SFR performance in comparison
with CeO2, the SOTA TCH material. For Sr3PrMn2O8,
we observed ∼30% higher hydrogen yield relative to
CeO2 when cycled under a high reduction temperature
of Tred = 1400 °C. Note that this behavior is reasonably
common amongst perovskite oxides when reoxidizing in
pure steam.4,5 Perhaps more interesting and less typical
was the increased hydrogen yield of Ba2Fe2O5 relative to
CeO2 when cycled at substantially reduced Tred = 1250
°C. Thus, in addition to a high success rate of identifying
possible water-splitters, this study identified a material
exhibiting SOTA performance at milder Tred, which could
potentially simplify future TCH reactor design and mate-
rial requirements. Future work will involve more detailed
explorations of these materials by probing their ability
to reoxidize in higher H2/H2O ratios, more deeply in-
vestigating the origins of their promising water-splitting
behavior, and optimizing their performance through sub-
stitution, alloying, or other modifications.
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