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Abstract 

Advances in generative artificial intelligence are transforming how metal–organic 
frameworks (MOFs) are designed and discovered. This Perspective introduces the shift 
from laborious enumeration of MOF candidates to generative approaches that can 
autonomously propose and synthesize in the laboratory new porous reticular structures on 
demand. We outline the progress of employing deep learning models, such as variational 
autoencoders, diffusion models, and large language model-based agents, that are fueled 
by the growing amount of available data from the MOF community and suggest novel 
crystalline materials designs. These generative tools can be combined with 
high-throughput computational screening and even automated experiments to form 
accelerated, closed-loop discovery pipelines. The result is a new paradigm for reticular 
chemistry in which AI algorithms more efficiently direct the search for high-performance 
MOF materials for clean air and energy applications. Finally, we highlight remaining 
challenges such as synthetic feasibility, dataset diversity, and the need for further 
integration of domain knowledge. 

1. Introduction 

Reticular synthesis of metal–organic frameworks (MOFs) epitomizes a materials design 
paradigm where modular inorganic nodes and organic linkers are linked into crystalline 
networks to engineer a periodic structure at the atomic level.1,2 Since the concept of 
reticular chemistry was proposed after the synthesis of the first MOFs3,4, the field has 
exploded with more than 100,000 distinct MOF structures synthesized to date,5,6 leading 
to a wide range of programmable materials with novel properties. Notably, the global 
MOF market continues to expand, with commercial demand projected to reach several 
hundred tonnes annually, and multiple companies have already deployed MOFs at 
industrial scale as solid sorbents.7,8 However, This immense structural diversity is both a 
triumph and a challenge: researchers can, in principle, create an almost boundless number 
of MOFs by swapping building blocks and topologies, yet identifying the optimal 
material for a given application is very similar to finding a needle in an infinitely large 
haystack due to the intractable combinatorics of MOF chemical space. Early efforts 
tackled this search by systematic enumeration.9,10 While such template-based approaches 
provided invaluable databases for gas storage and separation studies, they inevitably 
explored only a tiny fraction of the vast “MOF universe.” Indeed, it is estimated that 
millions of MOF structures have been predicted in silico beyond those made 
experimentally.11 Societal needs like carbon capture,12,13 clean water,6,14 clean energy,15–17 
and catalysis18,19 may be met by reticular materials with exceptional performance that lie 
in uncharted regions of chemical space.2,20 Thus, the following question arises: how can 
we intelligently navigate this exponentially large design space to discover MOFs with 
transformative properties for desired applications? 

The recent revolution in deep generative artificial intelligence (GenAI) models, ranging 
from variational autoencoders (VAEs)21 to generative adversarial networks (GANs)22, 
diffusion models21 and language models24, offers an unprecedented opportunity to “dream 
up” novel reticular materials in silico and subsequently realize them in the 
laboratory.2,25–30 Broadly speaking, GenAI models are machine learning models that learn 
the underlying patterns of data to create new, similar data.31 While traditional 
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trial-and-error approaches struggle to keep up with the sheer combinatorial possibilities 
offered by reticular chemistry, generative models offer a way to unlock creativity at the 
atomic scale, proposing candidates that meet multiple design objectives simultaneously 
(e.g. high gas uptake and selectivity/stability / reduced cost).2,11,28,29,32–36 In this 
Perspective, we explore how generative AI is reshaping MOF discovery, melding 
computational prediction with experimental realization (Figure 1). We first discuss the 
evolution of generative techniques for crystalline materials and how they were adapted to 
MOFs. We then highlight specific strategies, which range from fragment-based assembly 
to 3D diffusion, that address the unique challenges of MOF generation. Next, we examine 
computational workflows and platforms that integrate generative models with 
high-throughput screening and even autonomous labs, closing the loop between virtual 
and real-world discovery. A key focus is to demonstrate how machine imagination can 
propose MOFs beyond human intuition, how these proposals are vetted through 
physics-based simulations and experiments, and how a new generation of AI tools and 
foundation models is accelerating the entire workflow of materials discovery. 

2. From Enumerative Design to Generative Modeling  

In the early 2010s, the dominant computer-assisted approach to discovering new MOFs 
was enumerative design: researchers built hypothetical MOFs by stitching together 
known molecular components in all allowable ways. For example, an early study by 
Wilmer et al. assembled MOFs from libraries of secondary building units (SBUs) and 
linkers according to known nets, producing a “hypothetical MOF” database that could be 
screened for high methane storage capacity.9 Such databases yielded valuable insights as 
top candidates from screening pre-existing building blocks and network architectures 
were later synthesized and confirmed as adsorbents (Figure 1).37 Efforts were 
subsequently taken by Colón et al. to diversify the enumerated topologies.38 Such efforts 
on topology screening have demonstrated success in identifying MOFs with high CO2 
adsorption capacity and concomitant selectivity in a flue gas stream.39 The next leap was 
to accelerate the diversity and efficiency of building blocks assembly and potentially 
remove those topological limitations in order to let an algorithm imagine entirely new 
MOFs not confined to prior templates. This required a fundamentally different approach: 
generative models that learn the underlying rules of assembly from data and then 
extrapolate to create novel structures. 

Generative modeling of crystalline materials is a non-trivial problem. Unlike molecules 
(which can be described by finite graphs) or images (fixed-size pixel grids), a MOF is an 
infinite periodic structure with long-range order and hundreds to thousands of  atoms in a 
unit cell (Figure 1b). Successes in generative AI for materials occurred in similar 
systems such as zeolites, a class of inorganic porous crystals with analogies to MOFs. In 
2020, Kim et al. reported an approach to generate zeolite structures using a generative 
adversarial network, dubbed “ZeoGAN”.40 They represented zeolites on a 3D grid to 
capture the pore structure of the crystal and trained a GAN to produce new frameworks 
with targeted methane adsorption energies. This was one of the first demonstrations that a 
neural network could learn the “construction rules” of a crystal family and inverse-design 
materials with user-specified properties. However, extending such methods to MOFs is 
far more challenging: MOFs contain multiple components (metal oxyhydroxy clusters 
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and organic linkers), a wider variety of chemistry than aluminosilicate composition of 
zeolites, and typically larger unit cells. In fact, experimentally synthesized MOFs already 
contain building blocks derived from over 60 elements, and computationally simulated 
MOFs can include over 100 atom types, making naive atom-by-atom generation schemes 
computationally intractable (Figure 1c).29,41,42 Generative models for MOFs therefore 
required leveraging their modular nature that serves as the core principle of reticular 
chemistry to simplify the representation and learn insights from both the computational 
and experimental workflows (Figure 1d, 1e). 

 

Figure 1 | Overview of design and characterization principles of MOF. a) Bottom-up 
assembly approach starting with the choices of SBUs, linkers, and stoichiometry. b) 
Generative approach by encoding the MOF structures in a latent space then decoding a 
latent vector to a MOF structure. c) Generative design of MOF structure files by 
selectively generating SBUs, linkers, and topologies, with optional conditions on, for 
example, pore geometry. d) Generated scripts from LLMs to use computational tools for 
simulating structures and properties of newly constructed new MOFs. e) Generated 
robotic actions from LLMs for experimental synthesis and measurement for designed 
new MOFs. 
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3. From 2D Linkers to 3D frameworks design 

Early MOF discovery relied heavily on fragment-based 1D or 2D chemical representation 
databases and human intuition due to the reticular nature of MOFs (Figure 2). MOF 
linkers, when connectivity was considered without 3D geometry, were often specified by 
IUPAC names or SMILES43 strings, and researchers searched large databases (e.g. 
PubChem44,45) for compatible organic molecules to serve as linkers for known nodes with 
different coordination numbers. Thus, conventional approaches for SMILES generation 
that have been developed for organic chemistry can be directly applied, enabling 
systematic in silico screening of MOF linker fragments and the MOF they can build up 
for targeted properties, for example, proposing analogues of known structures by utilizing 
new linkers.46,47 Translating a 2D blueprint into a 3D crystal structure, however, is a 
non-trivial step in MOF chemical space due to the complexity of topological nets that 
connect SBUs and linkers and the periodic nature of crystalline materials. Many MOF 
structures significantly change upon 3D optimization, with some frameworks collapsing 
during the solvent removal or some breathing MOFs adjusting their pores volumes.48–50 
On the other hand, these 2D-based workflows often rely on known topologies. Recent 
advances in generative AI now enable direct design of 3D structures, yielding fully 
formed MOF crystal structures complete with realistic geometries and spatial constraints 
without requiring manual assembly or downstream optimization.51 By learning from 
known structures and conditioning on desired properties, GenAI models have potentials 
of accelerating the discovery of novel frameworks with high validity rates and tailor pore 
environments to specific applications. Together, these models offer unprecedented 
flexibility for generating 3D MOF structures, reducing reliance on hand-crafted databases 
and enabling property-driven exploration of chemical space. 

From the different components of MOFs that can be altered (i.e. topological net, 
inorganic node, and organic linker), the linker offers the chemical design space (Figure 
3a). In contrast, the nuclearity and connectivity of inorganic nodes are largely dictated by 
reaction conditions and are therefore difficult to control directly. Leveraging this 
asymmetry, Park et al. fine-tuned the DiffLinker (a diffusion model for 3D organic 
molecule generation) to design organic linkers predicted to boost CO₂ uptake, then 
inserted them into a prototypical MOF architecture by fixing the metal nodes (e.g., Cu 
paddlewheels and Zn tetramers) and constraining the topology to the pcu net, which is a 
primitive 3‑D cubic network frequently seen in MOF crystal structures.52 This modular 
strategy, named GHP-MOFassemble, where GHP stands for generative 
high-performance, targeted carbon-capture materials without requiring generation of the 
entire framework at once. A set of 540 molecular fragments that frequently appeared in 
high-performing MOFs for CO₂ capture was used to allow the model to assemble over 
12,000 new linker molecules, which were then used to assemble about 120,000 
hypothetical MOFs. While these MOFs have yet to be synthesized and tested 
experimentally, the study provided clear proof-of-concept that generative AI can rapidly 
explore the MOF search space and pinpoint designs that would have been unlikely to 
emerge from human imagination or brute-force enumeration. 
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Beyond linker-centered design, 3D structures of MOFs can also be directly generated 
(Table 1). Yao et al. introduced SmVAE (supramolecular variational autoencoder), which 
can encode MOFs into latent vectors (Figure 3b), through deconstructing them into 
metal nodes, multiconnected organic nodes, ditopic linkers, and topological nets, and 
decode them back to full frameworks.53 About 61.5% of random latent samples are 
chemically valid, as verified by building-block compatibility and steric‑hindrance checks, 
meaning a majority of the materials generated by the SmVAE were chemically plausible. 
In addition, an auxiliary predictor was trained to steer generation in the latent space 
toward generating MOFs with high CO2-uptake.  

 

Figure 2 | Parallel evolution of metal–organic frameworks (top) and artificial 
intelligence (bottom) from 1995 to 2025. Stacked bars (right axis) show the cumulative 
number of MOF crystal structures (1D, 2D, and 3D) deposited in the Cambridge 
Structural Database (CSD) as of July 2025, where values are given in thousands (K). The 
upper timeline marks representative innovations in experimental MOF research,4,54–57 
while the lower timeline traces key breakthroughs in machine learning that have inspired 
new computational approaches to scientific discovery.23,24,58–61 
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With the popularization of diffusion models, Fu et al. developed MOFDiff, a 
coarse-grained diffusion model that constructs MOFs de novo by sequentially placing 
SBU and linker fragments together as rigid 3D objects.62 A post-processing step aligned 
these fragments into a 3D periodic crystal, avoiding topological biases and producing 
approximately 30% novel, chemically valid frameworks. More recently, a model called 
MOFFUSION introduced a novel way to encode a MOF for generative tasks by using 
signed distance functions to represent the pore structure of the framework.63 By training a 
latent diffusion model on signed distance representations of thousands of MOFs, 
MOFFUSION learned to generate new signed distances that correspond to plausible 
MOF structures. These signed distance functions were then decoded into actual MOF 
atomic structures via a reconstruction step, resulting in high validity of its generated 
structures. In addition, classifier-free guidance enables conditional generation on numeric 
(e.g., surface area), categorical (metal, topological net), or textual descriptors, yielding 
property-conditioned MOF designs.  

With joint diffusion that encoded the distribution of multiple building blocks, Duan et al. 
developed building-block-aware (BBA) MOF diffusion,64 employing an object-aware 
SE(3)-equivariant diffusion model that learns 3D, all-atom representations of individual 
building blocks while explicitly encoding crystallographic nets. BBA MOF Diffusion 
overcomed the size constraints of periodic materials generation and readily sampled 
MOFs of 1000 atoms with high geometric validity, novelty, and diversity (Figure 3b). A 
top-ranked [Zn(1,4-TDC)(EtOH)2], where TDC2- = thiophenedicarboxylate, was 
synthesized and confirmed by powder X-ray diffraction (PXRD), thermogravimetric 
analysis (TGA), and N2 sorption, demonstrating the practical utility of BBA-MOF 
diffusion for the design of high-performance MOFs. Building upon these advances, 
MOFFLOW-2 introduced a flexible two-stage framework that combines autoregressive 
SMILES-based generation of novel building blocks with a flow-matching model that 
predicts translations, rotations, and torsions for 3D assembly.65,66 This enabled the design 
of chemically diverse MOFs with flexible linkers and accurate structures, overcoming the 
limitations of fixed libraries and rigid conformations. 

Table 1. Comparison of Key Features and Distinctions of the Major Generative 
MOF Models. 

Model Architecture Representation I/O  Target 
Properties 

SmVAE  VAE (2-module 
encoder-decoder) 

Topology + 
building blocks 
(discrete) 

Input: topology + node/linker 
IDs; Output: same format. 

CO2 capture 
(capacity/selectivi
ty) 

GHP-MOF
assemble 

Diffusion (for linker 
gen) + rule-based 
assembly 

SMILES linkers; 
fixed metal 
nodes & pcu net 

Input: fragments from 
high-performing MOFs; Output: 
novel linker SMILES → 
assembled MOF. 

CO2 uptake 
(low-pressure); 
HPC screening 
for max capacity 
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MOFDiff  SE(3)-Equivariant 
Diffusion 

Coarse-grained 
3D graph (nodes 
= building 
blocks) 

Input: noise; Output: block types 
+ 3D coords. 

CO2 working 
capacity 

MOFFUSI
ON 

Latent diffusion 
(VQ-VAE + 3D 
U-Net) 

3D volumetric 
grid 

Input: Signed distance function 
grid; Output: new MOF signed 
distance function → atom 
structure. Conditioning: 
numeric, categorical, or text 
prompts 

H2 storage 

BBA-Diffu
sion 

Object-aware 
SE(3)-Equivariant 
diffusion 

All-atom building 
blocks + net 
connectivity 

Input: noise + topology; Output: 
full MOF structure in that net. 
Topology conditioning built-in 

High-scoring 
candidates found 
via heuristics 

MOFFlow2 
Autoregressive 
transformer + 
Flow-matching 

3D building 
blocks 

Input: SMILES of building 
blocks; Output: transition, 
rotation, torsion, lattice 

Unconditional 
generation 

ChatMOF Agentic LLM + 
genetic algorithm 

Text ↔ MOF 
(via internal 
tools) 

Input: natural language; Output: 
predicted MOF (formula/CIF). 
Conditioning via prompt 

H2 Uptake 

MOFTrans
former 

Multi‑modal 
transformer 
encoder 

Atom‑based 
graph + 
methane‑probe 
energy‑grid 
patches 

Input: MOF structure; 
Output: predicted properties via 
fine-tuned model 
 

Gas uptake, 
diffusion, band 
gap, stability 
metrics 

 

4.  From Native Transformers to Large Language Models 

In addition to VAEs, GANs, and diffusion models, first introduced in 2017, a different 
type of architecture called transformers has emerged as a powerful tool for learning 
patterns in structured domains by using self-attention to capture contextual relationships 
in sequence data in the field of natural language processing (NLP).52 Chemistry itself can 
be viewed as a language since atoms and building blocks follow a grammar making it 
well-suited to transformer-based modeling.67 Soon after the development of landmark 
models like BERT68 and generative pre-trained transformers (GPT)63 which attained 
unprecedented performance in language generation tasks, the successes quickly inspired 
adaptations in chemistry and materials science, where sequential or graph-based 
representations of molecules could similarly benefit from attention mechanisms.24,69 
Transformer-based networks have been applied to molecular property prediction and 
reaction modeling, often outperforming traditional descriptors.70 Naturally, transformer 
architectures have also been leveraged for structure–property predictions in porous 
crystals. A MOFormer model that encodes MOF components as text strings (e.g. 
“MOFid”10 identifiers) achieved rapid property predictions without requiring 3D 
structures by coupling with Crystal Graph Convolutional Neural Networks (CGCNN).71 
Likewise, a multi-modal MOFTransformer pre-trained on over a million hypothetical 
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MOFs can be fine-tuned to predict diverse properties with improved accuracy over 
previous machine learning (ML) models,72 such as gas adsorption isotherms, diffusion 
coefficients, and band gaps. These models not only accelerated high-throughput 
screening of MOFs but can also provided some interpretability (e.g. by analyzing 
attention weights to identify important structural features), though understanding of 
learned representations remains an active area of research, indicating the promise of 
transformers as generalizable, data-driven predictors for MOF chemistry.73,74 

 

Figure 3 | Generative design strategies for metal–organic frameworks. a)  
Deconstruction-to-reconstruction workflow where reported MOF structures MOF are 
segmented into its organic linker and inorganic secondary building unit fragments and a 
generative module subsequently modifies and recombines these fragments to propose 
new framework topologies and atomic structures. b) Representative deep-learning 
architectures used for MOF generation. From left to right: a supramolecular variational 
autoencoder that encodes complete frameworks into a continuous latent space and 
decodes them back; a building-block-aware diffusion model that samples edges, nets and 
nodes to assemble MOFs stochastically; and a multi-modal conditional diffusion model 
that generates signed-distance-function (SDF) volumes which are subsequently converted 
into full atomic MOF structures. 

Beyond prediction tasks, general-purpose large language models (LLMs) have 
demonstrated remarkable generative capabilities that are now being repurposed for 
chemical and materials innovation. In their native domain of NLP, transformer-based 
LLMs can compose fluent passages of text or even generate computer code, illustrating 
their capacity for open-ended synthesis of information. This generative power has been 
harnessed in chemistry for tasks like de novo molecular design, reaction pathway 
generation, synthesizability prediction, and even crystal structure proposal.75–78 For 
instance, language models fine-tuned on chemical corpora can auto-complete SMILES 
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strings to propose novel compounds or suggest multi-step synthetic routes, effectively 
treating molecular design as a language-generation task.79 Similarly, language models 
fine-tuned on SMILES string and IUPAC names of existing reported MOF linkers 
demonstrate the ability to propose new and valid organic linkers based on human 
instruction.80 Furthermore, coupled with evolutionary algorithms, the internal chemistry 
and materials knowledge and reasoning capability of LLMs were exploited for functional 
organic molecules,76 transition metal complexes,81 and bulk materials design,77 
performing on par or better than conventional genetic algorithms and Bayesian 
optimization.82 More recently, a text-guided GenAI model, Chemeleon, conditions a 
diffusion-based crystal generator on textual descriptions, allowing it to propose novel 
crystal structures informed by both chemistry language and 3D structural data.77 
Together, these research findings suggest that LLMs can serve not only as natural 
language interfaces, image creators, or coding assistance popularized for commercial use, 
but also as creative engines in MOF research for generating new MOF building block 
combinations, suggesting synthesis plans, and integrating domain knowledge on-the-fly 
to accelerate the discovery of next-generation MOFs. 

5. Human-in-the-Loop Workflows for Gen AI-Driven MOF Discovery 

Generative modeling provides an unprecedented way of proposing new candidate 
materials, potentially unlocking chemical spaces unimaginable by enumerative library 
screening. Generative models alone, however, are only the beginning rather than the end 
of a materials discovery pipeline (Figure 4). Once obtaining new MOF structures, we 
need to answer crucial questions: Are these structures physically plausible and 
synthesizable? Do they have the properties we want? How do we actually make them in 
the lab? Therefore, building end-to-end MOF discovery workflows that couple 
generative models with simulation, optimization, and robotic experimentation are 
desirable for reticular materials generation with targeted properties.2,25,83,84  

Traditional MOF discovery relies on manual workflow, where researchers search and 
interpret literature, plan experiments, and conduct synthesis and characterization.2,25,26 
These approaches, while effective, are limited by human cognitive biases and throughput 
constraints, making them inadequate for exploring the vast combinatorial MOF chemical 
space.85 In contrast, interactive GenAI platforms now let chemists exploit data-driven 
literature mining without bespoke coding.86,87 Some early examples of interactive GenAI 
for MOF research include the ChatGPT Chemistry Assistant88, Paragraph2MOFInfo89, 
LLM-NERRE90, Eunomia,91 and L2M392, which helps extract MOF data from the 
literature, allowing experimentalists to query papers and synthesis procedures 
conversationally via natural language. By unifying literature-derived insights with 
computational chemistry data and linking them to crystal structures, LLM-based 
workflows such as MOF-ChemUnity93 enable literature-informed AI assistants for 
scalable, multisource data mining. In the meantime, multimodal generative models with 
vision capabilities, such as GPT-4V have also shown promise in helping labeling and 
extracting MOF characterization data from literature figures.94 On the other hand, 
agentic-AI is a promising approach to augment LLMs with proper tools for task 
execution, such as data mining91 and generation. For example, ChatMOF95 developed by 
Kang and Kim demonstrated a tool-augmented system where an LLM agent marshals 
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tools for database search, property prediction, and structure generation, responding to 
plain-language requests, such as “Can you suggest a MOF structure with a pore size 
around 1.2 nm and high methane storage capacity?” The agent interfaces with provided 
generative modules, ranging from genetic algorithms to diffusion models, to propose 
novel MOF structures.  

 

Figure 4 | Evolution of design and synthesis practices for MOF innovations. 
Schematic illustration of the progressive integration of generative AI into close-looped 
MOF discovery. The transition from human-led decision-making (left and middle) to 
AI-driven orchestration is enabled through structure, recipe, instruction, and knowledge 
generation modules (right). 

Beyond data mining and inferencing, GenAI agents have the potential to integrate with 
enhanced-sampling simulations to form a self-optimizing, closed-loop pipeline for MOF 
discovery. An autonomous agent could coordinate multi-fidelity strategies (e.g., nested 
sampling96, metadynamics97, thermodynamic maps98) to act as a physics-informed oracle. 
Inexpensive coarse evaluations could outline the free-energy landscape, while 
high-resolution profiles would refine priority frameworks to capture features like 
sorption-induced phase transitions99 and gate-opening events100 that influence usable 
capacity. This approach mirrors multifidelity Bayesian optimization101, filtering 
candidates efficiently and reserving costly evaluations for top performers. Besides, it is 
envisioned that thermodynamic observables (ΔHads, ΔSads) and phase boundaries be 
introduced to suggest optimal linker-node-topology combinations that aim to maximize 
gas uptake, selectivity, and structural robustness under realistic operating conditions. 
Leading candidates could be synthesized by automated platforms and validated through 
high-throughput characterization, feeding data back into the workflow. 

Closer to the experimental end, Yan et al. developed MOFA102, a workflow that couples a 
generative linker model (MOFLinker) with automated assembly, simulation-based 
screening, and on-line retraining, forming a self-improving loop for MOF discovery. 
They found MOF candidates whose predicted CO2 uptakes (GCMC at 0.1 bar, 300 K) 
ranked in the top decile of a 137,652 hypothetical MOF benchmark. Despite these 
advances, experimental verification remains predominantly manual, with researchers 
synthesizing and characterizing a limited subset of AI-generated candidates constrained 
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by synthetic feasibility and available resources.103–105 Moreover, even successfully 
synthesized MOFs often require post-synthetic functionalization to achieve optimal 
performance. Those modifications are difficult to model in silico and represent an 
additional layer of complexity in translating AI-generated designs to functional materials. 
To address these limitations, echoing developments in LLM-driven organic synthesis 
(e.g., ChemCrow106 and Co-Scientist107 ), MOF research is beginning to incorporate 
LLM-copilot workflows such as the ChatGPT Research Group108 and Chemical Robotic 
Explorer109 for iterative reaction optimization. These systems reveal that the application 
of GenAI models extends beyond merely structure generation as they can also generate 
scripts for synthetic protocols and robotic execution. Recently, Inizan et al.51 developed 
an agentic AI system to propose and validate synthesizable MOFs. Here, an LLM is first 
used to propose novel MOF compositions, followed by a diffusion model to generate 
crystal structures, and quantum chemistry calculations to optimize and filter candidates. 
Five AI-predicted MOFs were experimentally synthesized with synthesis conditions 
systematically explored using a robotic high-throughput platform. 

As laboratory automation continues to evolve, it is envisioned that GenAI-in-the-loop 
workflows will be increasingly viable. In such systems, AI agents autonomously generate 
candidate structures, design synthesis protocols, interface with robotic platforms, and 
iteratively refine outputs based on experimental feedback. This paradigm represents a 
shift from static and manual workflows towards adaptive and closed-loop pipelines that 
can significantly accelerate MOF discovery. 

6. Outlook 

Generative AI is poised to fundamentally reshape how we discover MOFs, transforming 
the process from a largely manual, intuition-driven craft into a data-rich, AI-accelerated 
science. To draw an analogy, reticular chemistry gave us the chemical language and 
grammar to construct MOFs deliberately, rather than by serendipity. Now, generative AI 
is like a creative agent fluent in that language, brainstorming new sentences (MOF 
structures) that are grammatically correct (chemically valid) but novel and inventive. The 
collaboration between humans and machines can amplify innovation: humans set the 
objectives and constraints inspired by application needs, and AI explores the possibilities 
at a speed and breadth that is close to what an entire team of human experts can achieve 
in years. 

To fully realize the potential of GenAI, several challenges still remain ahead (Figure 5). 
First, validation bottlenecks will arise as AI generates more candidates than we can 
reasonably test experimentally. Manually synthesizing and evaluating a predicted MOF 
can take months, and might result in a failure due to inaccurate scoring functions. This is 
where improved screening models and autonomous experimentation must step in. 
Second, experimental constraints pose significant integration challenges. MOF discovery 
often requires new experimental protocols or customized hardware, limiting the 
applicability of existing robotic platforms. Developing flexible and modular self-driving 
laboratories capable of accommodating diverse synthesis routes is therefore critical. In 
parallel, GenAI must also evolve to generate robotic workflows tailored to the constraints 
of individual systems. Third, diversity vs. realism will potentially be a perpetual 
trade-off: pushing a model too hard to explore out-of-distribution MOFs may result in the 
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model outputting unphysical structures, but constraining it too tightly will lead to 
recapitulation of known MOFs. This also raises the issue of hallucination, where 
generative models may confidently create structures or synthetic pathways that are 
chemically implausible. Addressing these issues requires integrating domain knowledge 
and human-in-the-loop strategies to penalize unrealistic generations. Future work on 
techniques like reinforcement learning with human chemist feedback could allow MOF 
researchers to iteratively refine generative models by giving feedback on small subsets of 
outputs. Community standards, including unified benchmarking metrics that reflect 
practical real-world benefits, and sharing of models will also be important. Indeed, many 
groups have released their code and even pretrained models.62,63,72,95 Democratizing the 
toolsets and making them easily accessible (e.g. through language model interfaces) will  
enable researchers, especially synthetic chemists, who are not AI specialists, to apply 
generative design to their specific MOF problems. 

While most generative models leverage repeatable building blocks to enable scaling to 
hundreds of atoms, limiting the available substructures to known motifs in the training 
data hinders the discovery of truly novel structures, including previously unknown 
linkers, metal nodes, and topologies. Models operating directly on atoms, such as 
All-Atom Diffusion Transformers62, are promising for small molecules and crystals, but 
lag behind building block-based approaches in terms of validity for MOF generation. An 
important future direction of research will be combining the flexibility of all-atom 
methods with the coarse-grained nature of building block-based models, which could 
furthermore incorporate transfer learning to leverage knowledge about crystals and 
molecules.  

 

Figure 5 | Accomplished goals (blue) and open challenges (green) towards 
realization of generative-AI designed MOFs. 
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It is also worthwhile noting that another critical limitation lies in the quality of available 
structural data. While hypothetical MOF datasets such as hMOF9,110, ToBaCCo38,111,112, 
and other in silico libraries provide valuable inputs for training generative models, they 
often lack experimental validation. By contrast, databases like CoRE MOF113–115 and 
QMOF111,112 are rooted in experimental data but may not cover MOFs that are harder to 
crystalize and can suffer from potential bias of structural false negatives. With this data 
limitation, how generative models can be designed to generate novel metal nodes and 
topology is an open challenge. In addition to previously raised concerns about geometric 
and charge errors,116 recent work found over 40% of widely used “computation‑ready” 
MOFs contain flawed metal oxidation states,117  undermining their reliability for 
DFT-level modeling and generative workflows. These findings underscore the 
importance of structure validation and repair pipelines that are not just for simulations, 
but also for ensuring generative models are trained on physically meaningful data. 
Moreover, MOF chemical data is inherently multimodal and derived from diverse 
sources. While current efforts in generative AI focus primarily on crystal structure 
generation, incorporating additional data modalities such as X-ray diffraction patterns 
could strengthen links between computational modeling and synthesis.118 Realizing this 
vision will require holistic datasets that integrate computational results, experimental 
measurements, and human-curated insights.93 

One exciting prospect is the integration of physics-based priors into generative models. 
Imagine a generative model that inherently respects force-field energetics or DFT 
stabilities, which could be approached by combining energy-based modeling with deep 
learning, so that the model preferentially generates structures in low-energy 
configurations.119,120 Some initial work using score-based generative models with physical 
constraints is appearing in molecular domains;121,122 for crystals, the idea of crystal 
symmetry and energy could be baked into the model’s training objectives. Community 
datasets that combine atomic coordinates112 with comprehensive energetics, including 
enthalpic and entropic contributions, could support transfer-learning workflows for 
adsorption74 and catalysis123, thereby facilitating each discovery cycle and enriching the 
collective knowledge base. 

Furthermore, this knowledge can also be incorporated post-training. Reinforcement 
learning-based fine-tuning with physics-based reward models and inference-time control 
using reward guidance are two promising directions. As available data will be run out for 
training generative models, inference-time scaling can be key to further improving model 
performance. As generative models produce candidates that push into unknown 
chemistry regimes, close collaboration with experimentalists will be essential to identify 
which suggestions are truly synthesizable. Furthermore, experimentalists will be able to 
verify the properties of the proposed new materials once obtained. Looking forward, this 
paradigm shift invites new thinking on how success in GenAI-guided MOF discovery 
should be defined, whether through the accurate synthesis of predicted structures, the 
generation of experimentally testable hypotheses, or the continual refinement of 
foundation models with new knowledge. Establishing robust success metrics will be 
essential for benchmarking progress and guiding future trajectory of MOF discovery in 
the GenAI era. 

14 

 

https://www.zotero.org/google-docs/?qcirI1
https://www.zotero.org/google-docs/?F0E9Nm
https://www.zotero.org/google-docs/?k3PnH9
https://www.zotero.org/google-docs/?c6VIq0
https://www.zotero.org/google-docs/?GqDNx0
https://www.zotero.org/google-docs/?FI4DUX
https://www.zotero.org/google-docs/?RZJO6I
https://www.zotero.org/google-docs/?VOgRzM
https://www.zotero.org/google-docs/?bfEAxT
https://www.zotero.org/google-docs/?oACFGj
https://www.zotero.org/google-docs/?UGHKHV
https://www.zotero.org/google-docs/?1rAo8q
https://www.zotero.org/google-docs/?5emeiF


In reflecting on the journey from early initial trial-and-error MOF designs to today’s 
AI-driven discovery, one is reminded of how data-driven insight can complement 
fundamental knowledge. Reticular chemistry gave us principles like “the topology can be 
decoupled from the components” and “infinite nets are achievable via strong bonds.”2,124 
Generative AI doesn’t change those principles; in fact, it leverages them.25,26 Reticular 
materials provided an ideal playground for GenAI, as it is a domain with modular 
chemistry and a wealth of data, and AI, in turn, is giving back to MOF science by 
revealing how vast and varied that playground really is. As the field progresses, we 
anticipate seeing AI-designed MOFs setting new records: perhaps an ultraporous MOF 
that captures and catalytically breaks down methane from agricultural or industrial 
sources, a water harvesting MOF with high capacity and fast kinetics providing clean 
water solution for semi-desert areas, or a CO2-capturing MOF that works efficiently in 
humid air and makes direct air capture (DAC) economically viable. In fact, in recent 
years companies like BASF and Svante are already advancing newly discovered, 
bench-developed MOFs toward industrial production.8 In conclusion, the MOF of the 
future might very well be conceived by an AI, but it will be the human scientists who 
guide the AI, synthesize the creation, and ultimately implement it in solving real-world 
problems. In that sense, generative AI is not replacing the reticular chemist. In fact, it is 
empowering them, much like a powerful new synthesis platform or characterization tool 
would. The reticular revolution has entered the digital age, and the prospects for 
innovation have never been more exciting. 
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