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Abstract

The migration of crystallographic defects dictates material properties and performance for a plethora of technologi-
cal applications. Density functional theory (DFT)-based nudged elastic band (NEB) calculations are a powerful
computational technique for predicting defect migration activation energy barriers, yet they become prohibitively
expensive for high-throughput screening of defect diffusivities. Without introducing hand-crafted (i.e., chemistry-
or structure-specific) descriptors, we propose a generalized deep learning approach to train surrogate models for
NEB energies of vacancy migration by hybridizing graph neural networks with transformer encoders and simply
using pristine host structures as input. With sufficient training data, computationally efficient and simultaneous
inference of vacancy defect thermodynamics and migration activation energies can be obtained to compute
temperature-dependent vacancy diffusivities and to down-select candidates for more thorough DFT analysis or
experiments. Thus, as we specifically demonstrate for potential water-splitting materials, candidates with desired
defect thermodynamics, kinetics, and host stability properties can be more rapidly targeted from open-source
databases of experimentally validated or hypothetical materials.

Introduction

Vacancies are the primary mediator for the diffusion of
atoms in ions in a large number of solid materials,1,2 in-
cluding crystalline oxides. The study of vacancy mobility
and diffusion in bulk materials has myriad technologi-
cal applications, including in devices that depend on low
or high mobility. Both metal3,4 and non-metal5,6 oxides
are of interest. Passivation layers, thermal and electri-
cal insulators, as well high conductivity thermoelectric,

electronic, and electrochemical devices depend on stable
atomic structures, which can undergo degradation due to
vacancy migration when exposed to high temperatures
and temperature gradients. A particularly consequen-
tial application is the geological confinement of hazardous
waste7,8 where diffusion can impact the long-term stabil-
ity of the confinement environment. Vacancy migration
can also play a role in other degradation processes, such
as corrosion.9,10 Diffusion is strongly affected by temper-
ature, vacancy concentration, and other factors,1,2 and
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significant diffusional anisotropy8 can serve either as a
challenge or a benefit in technological design.

To guide materials design and optimization for targeted
vacancy defect diffusion properties, first-principles calcu-
lations of defect migration activation energies11–14 based
on nudged elastic band (NEB) calculations15,16 are often
utilized to provide critical atomistic insights. However,
they become extremely expensive due to their reliance on
density functional theory (DFT), particularly due to the
need for large host supercell structural representations to
avoid spurious interactions between the periodic defect
images. Even more difficult is the prediction of, for exam-
ple, temperature-dependent vacancy diffusivity tensors,17
because one must compute the vacancy migration acti-
vation energy of all plausible symmetrically inequivalent
paths, of which there can be many for compositionally
or structurally complex materials. To address the large
computational cost of these calculations, surrogate mod-
eling approaches like cluster expansion (CE) have been
employed to predict defect migration activation energies
in a variety of contexts18–20 for specific types of structures
and chemistries. Meanwhile, other approaches to miti-
gate this difficulty have focused on a priori estimation of
low energy paths to lower the number of first-principles
calculations needed subsequently.21

Substantial work has recently been devoted to the use
of various machine learning surrogate models for vacancy
or interstitial defect thermodynamic properties,22–27 and
defect migration activation energies have been well cor-
related with physical descriptors.28–31 Here, we extend
these efforts and derive generalized structure-property
surrogate models of NEB-calculated defect migration
(i.e., yielding both formation energies and activation en-
ergies) that can be applied across any structure type or
chemistry space with an accuracy that is principally lim-
ited by quantity and diversity of NEB training data. Crit-
ically, the only input to the model is the relaxed host
structure and a tuple of indices that represent the start
and end atomic sites for the vacancy migration event; i.e.,
relaxed structures for each NEB image are not used. The
basis for this model is a graph neural network architec-
ture, whose convolution functional form could in princi-
ple be taken from one of the many variants recently pro-
posed,32–36 which is then hybridized with a transformer
encoder37 to enforce various physical, NEB-required sym-
metry constraints in the model’s output.

To begin, we create a training database of neutral oxy-
gen vacancy migration activation energies across a di-
verse structural and chemical space of metal oxides. Our
trained model can then screen Materials Project (MP)
structures38 to predict the activation energies of all pos-
sible vacancy diffusion paths below a distance cutoff on
the path length, and subsequently compute temperature-
dependent diffusivity tensors from this data.17 In ad-
dition to generally identifying materials with interest-
ing diffusivity characteristics, utility in a specific mate-
rials discovery application is demonstrated via a multi-

dimensional down-select of materials for thermochemi-
cal water-splitting (TCH)39–42 based on predicted oxy-
gen vacancy defect thermodynamics, diffusivity, and host
stability. While this dataset considers only neutral oxy-
gen vacancies and does not delve into more complex
defect-mediated diffusion pathways31,43 (e.g. interstitial-
facilitated or knock-out diffusion), we nonetheless expect
to identify promising materials that can be investigated
on a case-by-case basis with more accurate methods. We
therefore also conclude with some perspectives on how the
proposed method can be improved with better accuracy
and greater applicability for future materials discovery
problems.

Results and Discussion

High-throughput NEB for oxygen vacancy diffu-
sion. We first queried MP (using mp_api v0.33.3) for
all oxides that only contain cations in the space of { Al,
Ba, Bi, Ca, Cs, Ga, Ge, Hf, In, K, Li, Mg, Na, Nb, Rb, Si,
Sn, Sr, Ta, Ti, Y, Zr }, yielding a total of ∼3700 unique
structures. Selection of this chemical space will be mo-
tivated later, where we describe our screening for TCH
candidate materials. To compute oxygen vacancy diffu-
sivity via a simple lattice site diffusion mechanism in a
single oxide, one must first define an O-O neighbor cutoff
radius (5.0 Å in this work) to identify all possible oxygen
vacancy migration paths, then compute the migration ac-
tivation energy (via NEB) for all symmetrically inequiv-
alent paths. Depending on its structural/chemical com-
plexity, a single oxide may easily contain O(102) or more
inequivalent O-O paths; thus, considering the expense of
NEB calculations, exhaustively obtaining the migration
activation energies needed for diffusivity predictions in a
single material can be arduous. Such an approach would
be infeasible for the O(104) or more materials typically
investigated in high-throughput screening studies.

An alternative approach is to screen materials using
a surrogate model, which nonetheless requires a training
dataset of oxygen vacancy migration activation energies
computed with NEB. For an N atom host supercell struc-
ture, Ch (where h denotes “host”), with total energy Eh,
we define an oxygen vacancy migration path by a tuple
of site indices corresponding to the start and end sites,
p = (s, e). A vacancy is created at the start or end site
and the atomic positions are relaxed at constant volume,
yielding structures Cs and Ce with total energies Es and
Ee. These two structures and energies, which are them-
selves independent of the path by which they are con-
nected, provide the fixed endpoints for an n-image NEB
calculation, which yields a sequence of energies,

{Epi
} = {Ep0=s, Ep1

, . . . , Epn
, Epn+1=e}. (1)

Here pi∈{1,···,n} denotes the index of the image along an
n-image NEB calculation, and p0 = s and pn+1 = e.

2

https://doi.org/10.26434/chemrxiv-2024-wrp5z ORCID: https://orcid.org/0000-0001-6263-5114 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-wrp5z
https://orcid.org/0000-0001-6263-5114
https://creativecommons.org/licenses/by/4.0/


Figure 1: (a) Number of times an element appears in the
272 training data compounds with at least one converged
NEB calculation. (b) Distribution of training data com-
pounds among crystal systems and binary, ternary, or
quaternary oxide chemical systems. (c) R2 performance
of some simple single variable linear regression models for
EA. Dashed black lines represent the line of best fit.

Relative formation energies are computed via

∆Hpi
= Epi

− Eh + µref
O (2)

where µref
O is the reference oxygen chemical potential,

such that the first and last values in the sequence corre-
spond to relaxed vacancy formation energies. Therefore,
∆Hp0

= ∆Hs and ∆Hpn+1
= ∆He and are path inde-

pendent. The forward and reverse migration activation
energies can then be computed,

Ef
A = max ({∆Hp1

, . . . ,∆Hpn
})−∆Hp0

Er
A = max ({∆Hp1

, . . . ,∆Hpn
})−∆Hpn+1

(3)

Note that we compute only neutral oxygen vacancy for-
mation and migration activation energies; the merits and
limitations of this choice for our desired materials screen-
ing applications will be discussed later.

From the ∼3700 queried oxides, we a priori prioritized
structures and paths for NEB calculations to ensure diver-
sity of chemistry, structure, and path lengths, as shown in
Figure 1 (see Supplementary Section 1 for more details on

DFT-based NEB calculations and training data structure
and path selection). We obtained 622 converged NEB
calculations spanning 272 structures, each of which rep-
resents a unique chemical system. Figure 1a summarizes
the chemical diversity of the training data, with color-
coding used to represent the number of compounds in
which each element appears. Figure 1b counts the num-
ber of compounds for each crystal system, grouping them
into bins corresponding to binary (b), ternary (t), and
quaternary (q) chemical systems.

Before delving into development of complex deep
learning-based regression models, it is worthwhile to in-
vestigate whether simple linear regression models, crafted
with physically-motivated features, may provide sufficient
accuracy and to provide a benchmark against more com-
plex models. Figure 1c indicates that single variable lin-
ear regression models based on simple descriptors can be
derived with R2 as high as ∼0.3. Here, max(Rionic−ov)
denotes the maximum in ionic radii overlap (using de-
fault pymatgen44 values) between any atom in the crystal
structure and the diffusing O atom along the vector of the
linearly interpolated path, p̄ = r̄s + η(r̄e − r̄s), η ∈ [0, 1],
between end and start site coordinates, r̄e and r̄s, re-
spectively, with ||p̄||2 denoting the path length. Some
interesting qualitative insights are observed, such as an
intuitive lower bound to EA for increasing max(Rionic−ov)
and ||p̄||2. However, these simple models are generally not
accurate enough (all have R2 ≤ 0.35) for downstream dif-
fusivity calculations in materials screening applications.

d2GNN surrogate model. We now seek a better sur-
rogate model for Equation (2), i.e., a single-shot predictor
of all NEB energies for a vacancy migration event from
one crystallographic site to another. The model should
facilitate rapid inference of NEB energies for all symmet-
rically inequivalent paths in not just one structure but
the potentially tens of thousands oftentimes examined in
high-throughput screening studies. We therefore seek to
construct a model, parameterized by weights θ, that re-
lies only on the relaxed host crystal structure, Ch, and the
path tuple p as input,

{∆Hpi
} = fd2GNN (Ch, p; θ) . (4)

The model must make predictions of the final energies
without knowledge of the final structure;24,45 i.e., any
structural information derived from the relaxed vacancy
crystal structures (Cs or Ce) or image crystal structures
(Cpi) cannot be utilized as input to the model. Fig-
ure 2a conceptualizes this procedure, whereby symmet-
rically distinct paths in a unit cell are projected within
a supercell, decorated with path image nodes, and subse-
quently used to predict all sequence energies directly in
one shot.

This one-to-many prediction must also address several
subtle symmetry constraints, also illustrated schemati-
cally in Figure 2a. For symmetrically inequivalent paths,
p ̸= p′ ̸= p′′, within the same crystal structure that share
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symmetrically equivalent end points, the predicted va-
cancy formation energies in different sequence predictions
must be equivalent,

∆Hp0
= ∆Hp′

0
= ∆Hp′′

0
, (5)

and therefore independent of the NEB images themselves.
The converse is not true, however. Image energies may
differ widely between symmetrically inequivalent paths
that share equivalent endpoints,

{∆Hp1,...,pn
} ≠ {∆Hp′

1,...,p
′
n
} ≠ {∆Hp′′

1 ,...,p
′′
n
}. (6)

Finally, mirror symmetry should be preserved such that
reversing p yields a reversed sequence of energies,

rev({∆Hpi}) = fd2GNN (Ch, rev(p); θ) (7)

These constraints will also be addressed in the following
model construction, which summarizes the architectures
visualized in Figure 2(b-c).

(Step 1): Graph encoding. A graph is constructed for a
given symmetrically distinct migration path that consists
of N + n nodes for the relaxed host crystal structure’s N
crystallographic sites, V = {v1, . . . , vN}, and the migra-
tion path’s n images, P = {vp1 , . . . , vpn}. In other words,
V must be identical across migration path graphs sharing
the same base structure, but P will differ between those
paths that are symmetrically distinct. Image nodes’ co-
ordinates are linearly interpolated along the displacement
vector between vs and ve.

(Step 2): Embedding. A crystal node’s initial feature
vector, v(0)

i = fembed(xi) is generated by an embedding
function on a feature vector that depends only on the
elemental identity of site i. In this case, xi is the ground
state electron configuration utilized by SpookyNet,36 and
fembed is a feed forward neural network layer. An image
node’s initial feature vector is equivalent to that of the
path’s endpoints such that v

(0)
pi = v

(0)
s = v

(0)
e .

(Step 3): Convolutions with directed message passing.
GNNs generally use a series of convolution, or message-
passing, functions to iteratively update nodes’ feature
vectors, from which a final property prediction can be
made. The challenge here lies in deriving a convolution
function that ensures that Equation (5) and Equation (6)
are respected. In other words, to preserve Equation (5),
feature vectors corresponding to crystal sites (which will
ultimately be used to predict the vacancy formation en-
ergies, ∆Hp0 and ∆Hpn+1) cannot be influenced by fea-
ture vectors corresponding to image nodes (which will be
used to predict the image energies, ∆Hp{0...n}). To ensure
Equation (6), the converse must be true and the image
energies clearly must depend on the path to which they
belong, and therefore the endpoints and their vacancy
formation energies. These considerations are also shown
schematically in Figure 2.

We therefore propose that all node feature vectors are
updated according to an identical convolution (or mes-
sage passing) function, but that neighbor lists for vi and

vpi
differ in construction and are directed. Specifically,

a crystal node’s neighbor list only consists of other crys-
tal nodes, {vj ∈ V}, while a path image node’s neighbor
list may consist of any nodes (either image or crystal),
{vj ∈ V ∪ P}. A series of t convolution functions, f (t)

conv,
are identically applied to update both crystal and path
image nodes,

v
(t+1)
i = f (t)

conv

(
v
(t)
i , {v(t)j ∈ V}

)
v(t+1)
pi

= f (t)
conv

(
v(t)pi

, {v(t)j ∈ V ∪ P}
)
.

(8)

A multitude of convolution architectures with vary-
ing complexity have been proposed in recent years.32–36
While fconv in Equation (8) could in principle be based on
a variety of these methodologies, given our small training
dataset, we utilize a low parameter complexity CGCNN32

convolution function for practical model training pur-
poses. More details of the CGCNN convolutional function
and the small modifications used herein are provided in
Supplementary Section 4.

(Step 4): Sequence extraction. Graph neural networks
for global property predictions often apply a pooling func-
tion to aggregate crystal node feature vectors and produce
a crystal size-invariant feature vector for downstream ma-
nipulation. Or, in the case of local property predictions
like defect formation energies,24 extraction of a single
node isolates the feature vector of interest for downstream
manipulation and property prediction. Here, after t′ total
convolutions, we extract an ordered sequence of nodes,
X(t′) = {v(t′)

0 ,v
(t′)
p1 , . . . ,v

(t′)
pn ,v

(t′)
n+1} that featurizes the

NEB trajectory for downstream manipulation. Any crys-
tallographic sites other than p0 = s and pn+1 = e are
discarded.

(Step 5): Sequence-to-sequence translation. Next we
apply a sequence-to-sequence transformation block to
preserve Equation (7). This could in principle adopt a
variety of forms, although here we choose to exploit the
self-attention mechanism of a (low parameter complex-
ity) Transformer Encoder37 to update the sequence val-
ues, X(t′′) = fTE(X

(t′)).
(Step 6): NEB energy decoder. The final NEB energy

sequence, {∆Hpi}, is predicted by one or more decoders,
here chosen as a single-input/single-output multi-layer
perceptron (MLP) as shown in Figure 2. The challenge
lies in assigning a frame of reference to the image nodes
and their relation to the energy sequence, i.e., visualized
in “Path decoration" in Figure 2a. Figure 2b shows the
first architecture variation we tested, where the NEB en-
ergies are predicted by the same decoder block. How-
ever, this formalism does not guarantee the satisfaction
of Equation (5), since the self-attention mechanism of the
transformer encoder enforces that v(t′′)

p0 and v
(t′′)
pn+1 depend

on v
(t′)
pi={1,...,n} . A fundamentally better solution is pro-

posed in Figure 2c, where more than one MLP decoder
block is used. Conceptually, a first MLP is used to de-
code only the image feature vectors, while a second MLP

4

https://doi.org/10.26434/chemrxiv-2024-wrp5z ORCID: https://orcid.org/0000-0001-6263-5114 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-wrp5z
https://orcid.org/0000-0001-6263-5114
https://creativecommons.org/licenses/by/4.0/


0

5

10

0 1 2 3 4

∆H
pi

[e
V]

Path Index (i)

p
p'
p''

Δ𝐻!!Δ𝐻!"Δ𝐻!#Δ𝐻!$Δ𝐻!%

fTE

𝒗!%&'
(#()𝒗!$

(#()𝒗!#
(#()𝒗!"

(#()𝒗!!%&
(#()

fembed

𝒱 =
{	𝑣'…𝑣(	}

𝒫 =
{	𝑣!$ 	𝑣!# 	𝑣!" 	}

Encode

fconv

Extract

NN 𝑣) ∈ 𝒱
Neighbor Filter
NN 𝑣) ∈ 𝒱 ∪ 𝒫

fembed

𝒱 =
{	𝑣'…𝑣(	}

𝒫 =
{	𝑣!$ 	𝑣!# 	𝑣!" 	}

Encode

fconv

NN 𝑣) ∈ 𝒱
Neighbor Filter
NN 𝑣) ∈ 𝒱 ∪ 𝒫

(b) (c)

𝒱 = {𝑣', 𝑣*}

Supercell

𝑣*

Unit Cell𝑣'

d2GNN predictions

(a)

𝒑 = (2,3)
𝒑′ = (2,5)

{Δ𝐻!)}

{Δ𝐻!)(}

{Δ𝐻!)((}

𝒗!%%+
(#(()𝒗!$

(#(()𝒗!#
(#(()𝒗!"

(#(()𝒗!!%&
(#(()

fdecode,1

𝒗!%%+
(#()𝒗!$

(#()𝒗!#
(#()𝒗!"

(#()𝒗!!%&
(#()

Extract

fdecode,2
fdecode,1

𝑣* 𝑣,
𝑣- 𝑣.

𝒑′′ = (2,4)

Path decoration
!!!"# !!" !!# 	!!$ !!%"$

Δ$!!"# :

Δ$!" :

Δ$!# :

Δ$!$ :

Δ$!%"$ :

fdecode,3

fTE

𝒗!%%+
(#(()𝒗!$

(#(()𝒗!#
(#(()𝒗!"

(#(()𝒗!!%&
(#(()

Δ𝐻!!Δ𝐻!"Δ𝐻!#Δ𝐻!$Δ𝐻!%

Figure 2: (a) d2GNN utilizes only the relaxed host structure as input. In the depicted unit cell with only one
inequivalent red crystal site node (ν2), the supercell contains multiple inequivalent paths (p ̸= p′ ̸= p′′) between
this symmetrically equivalent endpoint. A given path is decorated with nodes νp1..n=3

that break the supercell
symmetry. The ordering of the energy sequence (0 . . . n + 1) is with respect to the vacancy motion (dashed red
circle), which is a reverse of the index that represents the occupation of the diffusing species (filled red circle) at a
given image coordinate (n+ 1 . . . 0). (b-c) The d2GNN architecture consists of six general steps: graph encoding of
the crystal and image nodes, an embedding function for the node features, a nearest neighbor filter that enforces
directed message passing in the convolution function, a sequence extraction, a sequence-to-sequence translation via
Transformer Encoder (TE), and a decoder step. Purple indicates steps involving learnable parameters, while yellow
denotes parameterless operations. Black arrow represent the flow of information, while red arrows represent a discard
of features. The improvement of (c) over (b) involves physically constraining the model to preserve Equation (5) via
independent decoders for the end states and the images.

is used to decode the endpoint feature vectors, but us-
ing only the pre-transformed sequence of feature vectors.
Meanwhile, v

(t′′)
p0 and v

(t′′)
pn+1 from the second MLP are

discarded. A third and final MLP decoder predicts the
final energies. This second architecture, which preserves
Equations (5) to (7), yields a large improvement in the
model performance (see Supplementary Section 4).

Model performance and validation. The d2GNN
model performance is evaluated by nested (K = 10,
L = 10)-fold cross validation. In this scheme, unique
structures are randomly split into K = 10 outer splits
(90% train, 10% test), and all paths in a given structure
are assigned accordingly.46 Thus no paths from the same
structure may be split between the train and test sets. For
each kth outer train split, the data is randomly divided
into L = 10 inner splits (90% train, 10% test). A model is

trained for each inner train split (using 10% of the data as
validation sets for early stopping), then all inner models
are used to predict the outer test set example, {∆Hpi

}L.
We take the bootstrapped ensemble average as the final
predicted value, ∆Hpi

= ⟨{∆Hpi
}L⟩, and the standard

deviation, σpi = σ({∆Hpi}L), as a heuristic metric for
the prediction uncertainty.46,47

Figure 3a-b show d2GNN vs. DFT test set parity for
vacancy formation energies and path image energies, re-
spectively. Figure 3c shows d2GNN vs. DFT predicted
EA, where some non-systematic error cancellation be-
tween the vacancy formation energies and the path image
energies reduces the R2 relative to the individual ∆Hpi

predictions. Here we show cross-validated test predic-
tions only for stable materials with hull energies EH = 0
eV/atom, since model performance begins to degrade for
test set predictions of unstable materials with EH ≳ 0.025
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Figure 3: (a) Test set predictions for the vacancy formation energies. (b) Test set predictions for the image energies.
(c) Test set predictions for the activation energies. (d) True positive rate vs. false positive rate when using the
regression model as a classifier for a given threshold of EA < X. (e-f) Test set predictions for the vacancy formation
energies and image energies, respectively, with error bars corresponding to σpi

. (g) Residual error for all predictions
vs. σpi

. After binning σpi
, red circles indicate the average of residuals within a given σpi

bin, and red error bars
the standard deviation of residuals within a given σpi

bin. (h) Examples of two structures with well predicted NEB
energies (top) and two poorly predicted NEB energies (bottom).

eV/atom, as discussed in the Supplementary Section 4.

Figure 3d shows the true positive rate (TPR) vs. false
positive rate (FPR) when using the regression model as
a binary classifier to identify whether a given path’s EA

is less than a chosen threshold. For low thresholds of
EA ∼ 1 eV, the model has about a 10 times higher TPR
than FPR. We therefore expect the model to differenti-
ate accurately between fast- and slow-diffusing materi-
als, even if it is not able to provide quantitative compar-
isons among the most exceptional candidates (i.e., those
with connected diffusion pathways with EA ≪ 1 eV). Fig-
ure 3e,f show the test set predictions with error bars cor-
responding to σpi , which is a useful uncertainty metric
on average that is correlated with the model’s residual
for a given prediction (Figure 3g).47 Finally, Figure 3h
shows two test set materials with low mean absolute er-
ror (MAE) predictions (top row) and two materials with
high MAE predictions (bottom row). Detailed investiga-
tions on potential sources of error and uncertainty in the
d2GNN predictions and the underlying NEB calculations
themselves are discussed in Supplementary Section 3 and
Supplementary Section 4 (e.g., paths with high atomic
overlap, end points corresponding to split vacancies, and

more).

High-throughput screening. As shown in Figure 4a
for one example material, we first enumerate all possi-
ble inequivalent O-O paths in the crystal structure (up
to 5 Å), then use d2GNN to predict {∆Hpi

} for all p,
and finally assign the predicted activation energies to
each possible symmetrically equivalent path in the mi-
gration path network. A critical aspect of our screen-
ing is the bootstrapped uncertainty metric, σpi

, which
we use to eliminate materials with uncertainty above a
chosen threshold. From hereon we only show materi-
als predictions where the average uncertainty across all
paths in a given material, {p}, is below a threshold,
⟨σpi

⟩{p} < 0.75 eV. Figure 4b shows the distribution of
all computed activation energies and vacancy formation
enthalpies (∆HV = ∆Hp{0,4}) across these screened com-
pounds, both of which are highly skewed. The raw screen-
ing data, including the high uncertainty predictions, also
reveals anomaly/outlier predictions that can be readily
identified as out-of-distribution materials with respect to
our training data; these are therefore discarded on the
basis of uncertainty (Supplementary Section 4).
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Figure 4: (a) Visualization of the mp-6456 structure (LiNbGeO5), the predicted {∆Hpi
} for all paths less than 5

Å (color-coded by EA) with white circles for ∆Hp{0,4} , and migration path network (red spheres are oxygen atoms,
edges are paths color-coded by EA). (b) Distribution of EA and ∆HV across all screened structures, color-coded by
EH threshold. For only near hull materials EH < 0.025 eV/atom: (c) Mean diffusivity vs. min(EA) for all structures,
color-coded by ĒA. (d) Arrhenius plot of the mean diffusivity vs. inverse temperature. (e) High-temperature diffusion
anisotropy vs. mean diffusivity and (f) the anisotropy ratio between high and low temperatures vs. the change in mean
diffusivity, where the colorbar represents the material count. For materials with non-null ∆µϕH=0

O : (g) minimum
host stability vs minimum vacancy formation energy, color-coded by mean diffusivity. The dashed black line depicts
y = −x − 1, an approximate lower bound to the host vs. defect stability correlation. (i) min host stability (gray
circles) and max host stability (orange circles) are connected by a red line. Within the cyan inset, materials satisfying
the strict set of TCH down-selection criteria are color-coded by mean diffusivity.

Our goal is then to predict the temperature-dependent
oxygen vacancy diffusivity tensor, D, in a high-
throughput manner to identify materials with useful (i.e.,
fast, slow, aniostropic) diffusivities and to elucidate rele-
vant correlations between vacancy defect thermodynam-
ics, kinetics, host stability, and chemistry. Given the va-

cancy sites, their energies, the connectivity of sites, and
transition state energies, the master equation for the dif-
fusivity is solved directly at each temperature T . The
direct solution,17 implemented in the open source On-
sager software (https://github.com/DallasTrinkle/
Onsager), is more computationally efficient than a Monte
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Carlo approach, and accuracy is limited only by round-
off error. Using the d2GNN predictions, we can therefore
obtain the temperature dependent oxygen vacancy diffu-
sivity tensors, DT , for each screened material. Units for
all reported diffusivity values are in cm2/s.

Because our model is less accurate for meta-stable and
unstable materials that are less likely to be able to be
synthesized, we show DT (T ∈ [800, 1500] K) predic-
tions in Figure 4c-f only for materials with EH < 0.025
eV/atom. We denote the eigenvalues of DT as λT , their
average as the mean diffusivity, λ̄T , and the ratio between
the maximum and minimum eigenvalues as the diffusion
anisotropy, λaniso

T = λmax
T /λmin

T . For a given material, we
plot λ̄1500 vs. the minimum activation energy min(EA)
and color-coded by the average of all paths, ĒA. As ex-
pected, a small min(EA) is a necessary but insufficient
criteria for a large diffusivity, as up to 8 orders of magni-
tude change in diffusivity can be observed for materials
with min(EA) < 0.5 eV. This indicates the importance of
a screening model that can estimate activation energies
of all possible (including high EA) paths in a structure as
well. Figure 4d shows an Arrhenius plot of diffusivity and
the orders of magnitude change among different materials
and across temperatures, some of which deviate from Ar-
rhenius behavior in the modeled temperature range. Fig-
ure 4e reveals that most materials have near-isotropic dif-
fusivities, but some can have λmax

T as much as 8 orders of
magnitude greater than λmin

T ; furthermore, among those
with the highest mean diffusivities (e.g., > 10−6 cm2/s),
a higher percentage of materials tend also to have large
λaniso
T . This anisotropy is also highly temperature depen-

dent, i.e., some materials that are isotropic at high tem-
perature become highly anisotropic at lower temperatures
(Figure 4f).

Among our screened materials, we can isolate those
with interesting predicted diffusivity properties (see Sup-
plementary Section 6), a sampling of which is shown in
Figure 5 and summarized in Table 1. These materials
were selected for (a) large mean diffusivity, (b) small mean
diffusivity, and (c) large mean and highly anisotropic dif-
fusivities, respectively. Materials (a) and (c) respectively
contain a 3d-connected and 2d-connected network of low
EA paths, while material (b) only possesses a periodically
connected migration network with relatively high EA.

Defect thermodynamics, kinetics, and host stabil-
ity correlations. Some materials discovery exemplars
necessitate identifying candidates with simultaneous tar-
get metrics for vacancy defect thermodynamics, diffusiv-
ity, and host stability, all of which may be interdependent.
Defining the oxygen chemical potential difference with re-
spect to the reference state, ∆µO = µO − µref

O , and us-
ing MP-computed formation energies for all oxides in the
screening space, we compute a stability range, denoted
∆µϕH=0

O = [∆µO | ϕH(∆µO) = 0]. This yields the ∆µO

range over which a given material is stable, i.e., its grand
energy above the hull, ϕH , equals zero. Figure 4g shows a

(a)

(b)

(c)

Ba3Nb5O15 (mp-8846)

NaAl11O17 (mp-3405)

K2Ti2O5 (mp-28075)

Figure 5: For three example structures with (a) large
mean diffusivity, (b) small mean diffusivity, and (c) large
mean and highly anisotropic diffusivities, we plot ∆Hpi

for all paths less than 5 Å (color-coded by EA) and visu-
alize the migration path network, with red spheres repre-
senting oxygen sites and edges representing possible mi-
gration paths (also colored by their EA).

strong correlation between the minimum value of the sta-
bility range, min(∆µϕH=0

O ), vs. the minimum vacancy for-
mation energy in a given material, with an approximate
lower bound of min(∆µϕH=0

O ) ≈ −1 eV − min (∆HV ).
This trade-off constrains the space in which materials
with desired host and defect stability can be designed.
Meanwhile, neither criteria strongly correlates with the
diffusivity λ̄1500, which can be tuned more independently.

Thermochemical hydrogen production materials
screening. One example where all three down-selection
criteria are important is the identification of metal ox-
ides for thermochemical hydrogen (TCH) production, i.e.,
water-splitting via a direct two-step thermal redox cy-
cle.39,41 Criterion #1 is that ∆HV ∈ [2.5, 4.0] eV,48 which
has been addressed by a variety of surrogate model-based
screenings. Criterion #2 necessitates that ∆µϕH=0

O span,
or at least intersect, the typical TCH redox oxygen chemi-
cal potential range between thermal reduction and water-
splitting, ∆µTCH

O = [−3.0,−2.5] eV.49,50 Finally, Crite-
rion #3 for screening TCH materials, hitherto unexplored
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Formula ID min(EA) ĒA log(λ̄1500) log(λaniso
1500 )

mp-8846 Ba3Nb5O15 0.6 3.3 -5.1 0.2
mp-3405 NaAl11O17 2.8 6.6 -16.1 0.2
mp-28075 K2Ti2O5 1.0 3.0 -5.7 3.5

Table 1: A summary of the diffusivity related predictions (formula, MP ID, min(EA), ĒA, max(EA), λ̄1500, and
λaniso
1500 for the three example structures shown in Figure 5.

via high-throughput screening, is that the oxygen vacancy
diffusivity, shown in Figure 4i, be as fast as possible. The
λ̄1500 color-coded materials in the cyan inset box are the
small fraction of screened compounds that satisfy both
Criteria #1 and #2. As shown by the red line connecting
min(∆µϕH=0

O ) and max(∆µϕH=0
O ), many materials pos-

sess an excellent stability range for TCH, but this is inex-
tricably correlated with vacancy formation energies that
are too high, which eliminates a large swath of candidates.
Only O(102) candidates survive these downselection cri-
teria, as examined in more detail in Supplementary Sec-
tion 7.

The selection of the cationic chemical space in the
present work excludes the 3d transition metals, with the
exception of Ti, which occurs mostly as Ti4+ in a d0 con-
figuration. On one hand, this selection allowed us to limit
the scope of this initial work for d2GNN to non-magnetic
DFT calculations. On the other hand, this selection also
addresses the hypothesis that high-performance materials
for TCH might be found outside the realm of 3d transi-
tion metal oxides, where the vast majority of recent re-
search efforts has been focused.51 While numerous discov-
eries of 3d oxides have been made over the past decade,
especially including manganates,40–42 the general trend
remains that these oxides split water only under dilute
H2:H2O conditions.41,52 This drawback can be attributed
to an insufficient reduction entropy, resulting from the
presence of repulsive defect interactions that reduce the
(atomic) configurational entropy contribution53 and from
the lack of electronic entropy contributions.49,54

The strong electron correlations in the 3d shell cause
localized electronic states, which nevertheless experience
significant interactions with the ligands,55 as well as the
existence of multiple oxidation states. As a consequence,
the excess electrons introduced by the O vacancy defects
tend to be strongly bound to the defect site, resulting in
a large ionization energy, which precludes the electronic
entropy contribution.56 While there could be exceptions
to this trend for suitable combinations of the transition
metal electron configuration and the ligand coordination
environment,57 a potentially rewarding alternative mate-
rials search strategy could focus on cations with more
delocalized non-magnetic electronic states, as included
in the present work, where a smaller ionization energy
could enable water splitting under much more concen-
trated H2:H2O mixtures,56 which is currently achieved
only in CeO2. While the present work does not directly
address the ionization energy and resulting electronic en-

tropy, it does provide the basis for selecting candidate
materials for additional electronic structure studies with
beyond-DFT methods that are required to address this
question.

Conclusions

We have provided a generalized graph neural network
modeling framework that can perform surrogate model
predictions for NEB energies in arbitrary crystal struc-
tures and vacancy migration paths. Relying only on
the host structure input and the specification of the
end points corresponding to the vacancy migration hop,
the model facilitates rapid inference on vacancy thermo-
dynamics (formation energies) and kinetics (migration
activation energies), while respecting relevant symme-
try constraints thanks to an intermediary Transformer
encoder and MLP decoder architecture. For a given
material, all predicted activation energies of all paths
up to a certain cutoff can be integrated with a first-
principles, temperature-dependent calculation of the dif-
fusivity tensor. Many materials can then be screened
in a high-throughput manner to identify candidates with
anomalous/interesting vacancy diffusivity properties. As
a proof-of-concept, we conducted high-throughput screen-
ing of a large chemical space of metal oxides, com-
bining neutral vacancy defect thermodynamics, kinetics,
and host stability, to identify promising candidates for
thermochemical hydrogen production via two-step water-
splitting redox cycles.

Several outstanding challenges remain and point to ex-
citing areas for improvement in future work. The chem-
ical space across which the model has been trained is
limited to 14 cations, so expanding the high-throughput
NEB calculations to more diverse (but more challenging
for DFT) materials like oxides with 3d transition metals
are rare earths will improve its applicability for materials
discovery across different domains. Similarly, our DFT
training data only consists of NEB trajectories for oxy-
gen vacancy migration, and this could be extended to
different element types to again improve applicability in
other materials discovery/modeling domains. The cur-
rent form of the model also only accounts for vacancy
migration events occurring between lattice oxygen sites,
while hops between interstitial sites are often favorable,31
and could be accounted for in future data collection and
an adjusted modeling framework. As discussed in more
detail in Supplementary Section 2, this initial demonstra-
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tion only focused on neutral oxygen vacancies, which of-
ten diffuse more slowly and have higher formation ener-
gies than charged vacancies (e.g., V 2+

O ) in materials with
band gaps. In such cases, we anticipate that our predic-
tions represent at worst a lower bound on the vacancy
diffusivity. Therefore, it would be beneficial in future
work to repeat certain calculations with charged vacan-
cies and to estimate the effect of charge on diffusivity
predictions in a large-scale screening.58 Finally, with the
advent of machine learning methods that can model po-
tential energy surfaces of inorganic materials across large
portions of the periodic table,33,59–61 it will be interesting
to compare the relative accuracy of this method to that of
NEB calculations performed using machine learned force
fields, which may not have been explicitly trained on high
energy migration barriers.
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