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ABSTRACT: The migration of crystallographic defects dictates
material properties and performance for a plethora of technological
applications. Density functional theory (DFT)-based nudged
elastic band (NEB) calculations are a powerful computational
technique for predicting defect migration activation energy
barriers, yet they become prohibitively expensive for high-
throughput screening of defect diffusivities. Without introducing
hand-crafted (i.e., chemistry- or structure-specific) descriptors, we
propose a generalized deep learning approach to train surrogate
models for NEB energies of vacancy migration by hybridizing
graph neural networks with transformer encoders and simply using
pristine host structures as input. With sufficient training data,
computationally efficient and simultaneous inference of vacancy
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defect thermodynamics and migration activation energies can be obtained to compute temperature-dependent vacancy diffusivities
and to down-select candidates for more thorough DFT analysis or experiments. Thus, as we specifically demonstrate for potential
water-splitting materials, candidates with desired defect thermodynamics, kinetics, and host stability properties can be more rapidly
targeted from open-source databases of experimentally validated or hypothetical materials.

B INTRODUCTION

Vacancies are the primary mediator for the diffusion of atoms in
a large number of solid materials,"” including crystalline oxides.
The study of vacancy mobility and diffusion in bulk materials has
myriad technological applications, including in devices that
depend on low or high mobility. Both metal”* and nonmetal >
oxides are of interest. Passivation layers, thermal and electrical
insulators, as well high conductivity thermoelectric, electronic,
and electrochemical devices depend on stable atomic structures,
which can undergo degradation due to vacancy migration when
exposed to high temperatures and temperature gradients. A
particularly consequential application is the geological confine-
ment of hazardous waste”* where diffusion can impact the long-
term stability of the confinement environment. Vacancy
migration can also play a role in other degradation processes,
such as corrosion.”' Diffusion is strongly affected by temper-
ature, vacancy concentration, and other factors,"”* and
significant diffusional anisotropy® can serve either as a challenge
or a benefit in technological design.

To guide materials design and optimization for targeted
vacancy defect diffusion properties, first-principles calculations
of defect migration activation energies''~'* based on nudged
elastic band (NEB) calculations' "¢ are often utilized to provide
critical atomistic insights. However, they become extremely
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expensive due to their reliance on density functional theory
(DFT), particularly due to the need for large host supercell
structural representations to avoid spurious interactions
between the periodic defect images. Even more difficult is the
prediction of, for example, temperature-dependent vacancy
diffusivity tensors,’” because one must compute the vacancy
migration activation energy of all plausible symmetrically
inequivalent paths, of which there can be many for composi-
tionally or structurally complex materials. To address the large
computational cost of these calculations, surrogate modeling
approaches like cluster expansion (CE) have been employed to
predict defect migration activation energies in a variety of
contexts'*~*° for specific types of structures and chemistries.
Meanwhile, other approaches to mitigate this difficulty have
focused on a priori estimation of low energy paths to lower the
number of first-principles calculations needed subsequently.”'
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Figure 1. (a) Number of times an element appears in the 272 training data compounds with at least one converged NEB calculation. (b) Distribution of
training data compounds among crystal systems and binary, ternary, or quaternary oxide chemical systems. (c) R? performance of some simple single
variable linear regression models for E,. Dashed black lines represent the line of best fit.

Substantial work has recently been devoted to the use of
various machine learning surrogate models for vacancy or
interstitial defect thermodynamic properties,”” " and defect
migration activation energies have been well correlated with
physical descriptors.”® ' Here, we extend these efforts and
derive generalized structure—property surrogate models of NEB-
calculated defect migration (i.e., yielding both formation
energies and activation energies) that can be applied across
any structure type or chemistry space with an accuracy that is
principally limited by quantity and diversity of NEB training
data. Critically, the only input to the model is the relaxed host
structure and a tuple of indices that represent the start and end
atomic sites for the vacancy migration event; ie., relaxed
structures for each NEB image are not used. The basis for this
model is a graph neural network architecture, whose
convolution functional form could in principle be taken from
one of the many variants recently proposed,”**° which is then
hybridized with a transformer encoder’” to enforce various
physical, NEB-required symmetry constraints in the model’s
output.

To begin, we create a training database of neutral oxygen
vacancy migration activation energies across a diverse structural
and chemical space of metal oxides. Our trained model can then
screen Materials Project (MP) structures®® to predict the
activation energies of all possible vacancy diffusion paths below a
distance cutoff on the path length, and subsequently compute
temperature-dependent diffusivity tensors from this data.” In
addition to generally identifying materials with interesting
diffusivity characteristics, utility in a specific materials discovery
application is demonstrated via a multidimensional down-select
of materials for thermochemical water-splitting (TCH)*~*
based on predicted oxygen vacancy defect thermodynamics,
diffusivity, and host stability. While this data set considers only
neutral oxygen vacancies and does not delve into more complex
defect-mediated diffusion pathways’"** (e.g,, interstitial-facili-
tated or knockout diffusion), we nonetheless expect to identify
promising materials that can be investigated on a case-by-case
basis with more accurate methods. We therefore also conclude
with some perspectives on how the proposed method can be
improved with better accuracy and greater applicability for
future materials discovery problems.
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B METHODS

High-Throughput NEB for Oxygen Vacancy Diffusion. We first
queried MP20 (using mp_api v0.33.3) for all oxides that only contain
cations in the space of {Al, Ba, Bi, Ca, Cs, Ga, Ge, Hf, In, K, Li, Mg, Na,
Nb, Rb, Si, Sn, Sr, Ta, Ti, Y, Zr}, yielding a total of ~3700 unique
structures. Selection of this chemical space will be motivated later,
where we describe our screening for TCH candidate materials. To
compute oxygen vacancy diffusivity via a simple lattice site diffusion
mechanism in a single oxide, one must first define an O—O neighbor
cutoff radius (5.0 A in this work) to identify all possible oxygen vacancy
migration paths, then compute the migration activation energy (via
NEB) for all symmetrically inequivalent paths. Depending on its
structural/chemical complexity, a single oxide may easily contain
0(10?) or more inequivalent O—O paths; thus, considering the expense
of NEB calculations, exhaustively obtaining the migration activation
energies needed for diffusivity predictions in a single material can be
arduous. Such an approach would be infeasible for the O(10*) or more
materials typically investigated in high-throughput screening studies.

An alternative approach is to screen materials using a surrogate
model, which nonetheless requires a training data set of oxygen vacancy
migration activation energies computed with NEB. For an N atom host
supercell structure, C, (where h denotes “host”), with total energy E,,
we define an oxygen vacancy migration path by a tuple of site indices
corresponding to the start and end sites, p = (s, ¢). A vacancy is created
at the start or end site and the atomic positions are relaxed at constant
volume, yielding structures C, and C, with total energies E; and E,. These
two structures and energies, which are themselves independent of the
path by which they are connected, provide the fixed end points for an n-
image NEB calculation, which yields a sequence of energies,

{pr} ={E E E (1)

Here p; ¢ 4, .., ny denotes the index of the image along an n-image
NEB calculation, and p, = sand p,,,; = e. Relative formation energies are
computed via

Poy=" P;"': pn:Epn_H=e}

ref

AH, =E, — B, +

2)
where 45 is the reference oxygen chemical potential, such that the first

and last values in the sequence correspond to relaxed vacancy formation
energies. Therefore, AH, = AH and AH, = AH, and are path
independent. The forward and reverse migration activation energies

can then be computed,

https://doi.org/10.1021/acs.chemmater.5c00021
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Figure 2. (a) d°GNN utilizes only the relaxed host structure as input. The schematically depicted unit cell contains one inequivalent cation site (v;)
and one inequivalent anion site (,) on which the vacancy migrates, the supercell contains multiple inequivalent paths (p # p’ # p”) between this

symmetrically equivalent end point. A given path is decorated with nodes v, that break the supercell symmetry. The ordering of the energy sequence

(0-n + 1) is with respect to the vacancy motion (dashed red circle), which is a reverse of the index that represents the occupation of the diffusing
species (filled red circle) at a given image coordinate (1 + 1---0). (b,c) d*GNN architecture consists of six general steps: graph encoding of the crystal
and image nodes, an embedding function for the node features, a nearest neighbor filter that enforces directed message passing in the convolution
function, a sequence extraction, a sequence-to-sequence translation via Transformer Encoder (TE), and a decoder step. Purple indicates steps
involving learnable parameters, while yellow denotes parameterless operations. Black arrow represent the flow of information, while red arrows
represent a discard of features. The improvement of (c) over (b) involves physically constraining the model to preserve eq S via independent decoders
for the end states and the images.

Ef

max({ AH,, -, AH, 1 - AH, crystal system, grouping them into b%ns corresponding to binary (b),
! " 0 ternary (t), and quaternary (q) chemical systems.

Before delving into development of complex deep learning-based
! ®) regression models, it is worthwhile to investigate whether simple linear
regression models, crafted with physically motivated features, may
provide sufficient accuracy and to provide a benchmark against more
complex models. Figure lc indicates that single variable linear
regression models based on simple descriptors can be derived with R*
as high as ~0.3. Here, max(R;gic_o,) denotes the maximum in ionic
radii overlap (using default pymatgen** values) between any atom in
the crystal structure and the diffusing O atom along the vector of the
linearly interpolated path, 7 = % + #(% — %), n € [0, 1], between
end and start site coordinates, 7, and T, respectively, with||p ||, denoting

E, = max({Ale, e AHP,,}) - AHH.+

Note that we compute only neutral oxygen vacancy formation and
migration activation energies; the merits and limitations of this choice
for our desired materials screening applications will be discussed later.

From the ~3700 queried oxides, we a priori prioritized structures
and paths for NEB calculations to ensure diversity of chemistry,
structure, and path lengths, as shown in Figure 1. We first sort the
queried structures based on their chemical system string (e.g,, “O—Zr").
Then, among all compounds of a given unique chemical system string,
we filter to keep only those with the minimum, median, and maximum

canonical energy above the hull (E;;) and assign them a “stability the path length. Some interesting qualitative insights are observed, such
priority” of 0, 1, or 2, respectively. Next, we assign a “complexity as an intuitive lower bound to E, for increasing max(Rionic—ov) and||7 [l,-
priority” equal to the number of elements in the chemical system However, these simple models are generally not accurate enough (all
structure, and we sort the filtered table by “stability priority” and have R* < 0.35) for downstream diffusivity calculations in materials
“complexity priority.” This final ordered list of prioritized structures screening applications.
provides a simple basis for increasing diversity of calculated training d’GNN Surrogate Model. We now seek a better surrogate model
structures (see Figure 1) within a fixed computational budget, for which for eq 2, i.e,, a single-shot predictor of all NEB energies for a vacancy
a priori estimation of how many structures and NEB paths could be migration event from one crystallographic site to another. The model
calculated was difficult. should facilitate rapid inference of NEB energies for all symmetrically
We obtained 622 converged NEB calculations spanning 272 inequivalent paths in not just one structure but the potentially tens of
structures, each of which represents a unique chemical system. Figure thousands oftentimes examined in high-throughput screening studies.
la summarizes the chemical diversity of the training data, with color- We therefore seek to construct a model, parametrized by weights 6, that
coding used to represent the number of compounds in which each relies only on the relaxed host crystal structure, C,,, and the path tuple p
element appears. Figure 1b counts the number of compounds for each as input,
6475 https://doi.org/10.1021/acs.chemmater.5c00021
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{AH,} = focan (Cy p; 0) (4)

The model must make predictions of the final energies without
knowledge of the final structure;” ¥ i.e., any structural information
derived from the relaxed vacancy crystal structures (C, or C,) or image

crystal structures (Cp) cannot be utilized as input to the model. Figure

2a conceptualizes this procedure, whereby symmetrically distinct paths
in a unit cell are projected within a supercell, decorated with path image
nodes, and subsequently used to predict all sequence energies directly
in one shot.

This one-to-many prediction must also address several subtle
symmetry constraints, also illustrated schematically in Figure 2a. For
symmetrically inequivalent paths, p # p’ # p”, within the same crystal
structure that share symmetrically equivalent end points, the predicted
vacancy formation energies in different sequence predictions must be
equivalent,

AH, = AH, = AH,x (5)

and therefore independent of the NEB images themselves. The
converse is not true, however. Image energies may differ widely between
symmetrically inequivalent paths that share equivalent end points,

{AHPI,m,pn} # {AHp{r“.p;} # {AHp{’w-,pn”} (6)

Finally, mirror symmetry should be preserved such that reversing p
yields a reversed sequence of energies,

rev({AHH}) = frann (G, rev(p); 0) )

These constraints will also be addressed in the following model
construction, which summarizes the architectures visualized in Figure
2b,c.

Step 1: Graph Encoding. A graph is constructed for a given
symmetrically distinct migration path that consists of N + n nodes for
the relaxed host crystal structure’s N crystallographic sites,
V={v, -, vy}, and the migration path’s n images,
P = {vpl, Y }. In other words, V must be identical across migration

path graphs sharing the same base structure, but # will differ between
those paths that are symmetrically distinct. Image nodes’ coordinates
are linearly interpolated along the displacement vector between v, and
V.

Step 2: Embedding. A crystal node’s initial feature vector, v(*) =
fembea(#;,) is generated by an embedding function on a feature vector that
depends only on the elemental identity of site i. Following the
embedding approach of SpookyNet,* #; is the ground state electron
configuration of the element occupying site i, e.g, for Li with
1525"2p%+, %= {2,1,0, - }. furbea is  feed forward neural network layer.
An image node’s initial feature vector is equivalent to that of the path’s
end points such that "1(1?) = (0 = (0,

Step 3: Convolutions with Directed Message Passing. GNNs
generally use a series of convolution, or message-passing, functions to
iteratively update nodes’ feature vectors, from which a final property
prediction can be made. The challenge here lies in deriving a
convolution function that ensures that eqs S and 6 are respected. In
other words, to preserve eq S, feature vectors corresponding to crystal
sites (which will ultimately be used to predict the vacancy formation
energies, AH, and AH, ) cannot be influenced by feature vectors

corresponding to image nodes (which will be used to predict the image

energies, AH, }) To ensure eq 6, the converse must be true and the

image energies clearly must depend on the path to which they belong,
and therefore the end points and their vacancy formation energies.
These considerations are also shown schematically in Figure 2.

We therefore propose that all node feature vectors are updated
according to an identical convolution (or message passing) function,
but that neighbor lists for v; and v, differ in construction and are

directed. Specifically, a crystal node’s neighbor list only consists of other
crystal nodes, {vj € V}, while a path image node’s neighbor list may

consist of any nodes (either image or crystal), {uj € V U P}. A series

6476

of t convolution functions, £}, are identically applied to update both
crystal and path image nodes,
oV =0 (6, () € V)

¢ conv

) = (0 (0, (0 €V U ). .
A multitude of convolution architectures with varying complexity
have been proposed in recent years.””*® While f.,, in eq 8 could in
principle be based on a variety of these methodologies, given our small
training data set, we utilize a low parameter complexity CGCNN**
convolution function for practical model training purposes. More
details of the CGCNN convolutional function and the small
modifications used herein are provided in Supplementary Section 4.
Step 4: Sequence Extraction. Graph neural networks for global
property predictions often apply a pooling function to aggregate crystal
node feature vectors and produce a crystal size-invariant feature vector
for downstream manipulation. Or, in the case of local property
predictions like defect formation energies,”* extraction of a single node
isolates the feature vector of interest for downstream manipulation and
property prediction. Here, after ¢’ total convolutions, we extract an

ordered sequence of nodes, X = {v(@ E vi(,tl” PR vg‘,), vfli)l} that featurizes
the NEB trajectory for downstream manipulation. Any crystallographic
sites other than p, = s and p,,, = e are discarded.

Step 5: Sequence-to-Sequence Translation. Next we apply a
sequence-to-sequence transformation block to preserve eq 7. This
could in principle adopt a variety of forms, although here we choose to
exploit the self-attention mechanism of a (low parameter complexity)

Transformer Encoder’” to update the sequence values, X*) =

fre(x©).
Step 6: NEB Energy Decoder. The final NEB energy sequence,
{AH, }, is predicted by one or more decoders, here chosen as a single-

input/single-output multilayer perceptron (MLP) as shown in Figure 2.
The challenge lies in assigning a frame of reference to the image nodes
and their relation to the energy sequence, i.e., visualized in “Path
decoration” in Figure 2a. Figure 2b shows the first architecture variation
we tested, where the NEB energies are predicted by the same decoder
block. However, this formalism does not guarantee the satisfaction of
Equation S, since the self-attention mechanism of the transformer
vy, and vy -

A fundamentally better solution is proposed in Figure 2c, where
more than one MLP decoder block is used. Conceptually, a first MLP is
used to decode only the image feature vectors, while a second MLP is
used to decode the end point feature vectors, but using only the

encoder enforces that depend on v,

pretransformed sequence of feature vectors. Meanwhile, vl(,fp and vr(fj
from the second MLP are discarded. A third and final MLP decoder

predicts the final energies. Most importantly, in addition to differ-
entiating the neighbor list construction for path and image nodes (eq

8), this second architecture drops {vgfo”), v}(fj} while updating {v‘f,z,), v}(fl

and {vgp AR vg”)} through different decoders to preserve eqs S and 6. In
other words, the vacancy formation energy (end point) predictions
remain independent of the path in which they are being predicted.
Meanwhile, using the Transformer encoder as the sequence-to-
sequence update function preserves eqs 6 and 7, i.e,, the image energies
do depend on each other and the end points, while also having input
reversal symmetry. Thus, the architecture Figure 2c yields a large
improvement in the model performance Figure 2b (see Supplementary
Section 4).

B RESULTS AND DISCUSSION

Model Performance and Validation. The d>*GNN model
performance is evaluated by nested (K = 10, L = 10)-fold cross
validation. In this scheme, unique structures are randomly split
into K = 10 outer splits (90% train, 10% test), and all paths in a

- : 46
given structure are assigned accordingly.” Thus, no paths from
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Figure 3. (a) Test set predictions for the vacancy formation energies. (b) Test set predictions for the image energies. (c) Test set predictions for the
activation energies. (d) True positive rate vs false positive rate when using the regression model as a classifier for a given threshold of E, < X. (e,f) Test
set predictions for the vacancy formation energies and image energies, respectively, with error bars corresponding to o, (g) Residual error for all
predictions vs 6,,. After binning 6,, red circles indicate the average of residuals within a given o, bin, and red error bars indicate the standard deviation
of residuals within a given 6, bin. (h) &> GNN-predicted NEB energies (dashed) vs DFT-predicted NEB energies (solid) lines for three paths within

two well-predicted test set exemplars (top, mp-3952 = BaY,0, and mp-1541753 = Rb,MgO,) and two less well-predicted test set exemplars (bottom,
mp-30988 = KBiO, and mp-3870 = Sr,Nb,0) whose absolute AH,, errors are large across all images; however, due to fortuitous cancellation of errors

with the i = 0 reference state, these still capture the E, of the minimum migration activation energy path reasonably well.

the same structure may be split between the train and test sets. screening for fast-diffusing materials, with the caveat that
For each kth outer train split, the data is randomly divided into L quantitative comparisons among the most exceptional candi-
= 10 inner splits (90% train, 10% test). A model is trained for dates remains unlikely (ie., those with connected diffusion
each inner train split (using 10% of the data as validation sets for pathways with E, << 1 eV). The TPR increases rapidly as the
early stopping), then all inner models are used to predict the threshold is increased to E, ~ 2 eV with only a slight FPR
outer test set example, {AHP.}L' We take the bootstrapped increase.

ensemble average as the final predicted value, AH, = ({AH, },), Figure 3e,f show the test set predictions with error bars

corresponding to o,, which is a useful uncertainty metric on
and the standard deviation, o, = 6({AH,};), as a heuristic P .g » ] o v .
’ 4647 average that is correlated with the model’s residual for a given

prediction (Figure 3g).*” This uncertainty metric is therefore
useful for immediately flagging highly out-of-distribution
predictions that are likely to be inaccurate, as exemplified by
the three lowest test d°GNN-predicted vacancy formation
energies that are negative or close to 0 and have very large errors
and uncertainties (Figure 3e).

Finally, Figure 3h shows two test set materials with low mean

metric for the prediction uncertainty.

Figure 3a,b show d?GNN vs DFT test set parity for vacancy
formation energies and path image energies, respectively. Figure
3¢ shows d?*GNN vs DFT predicted E,, where some non-
systematic error cancellation between the vacancy formation
energies and the path image energies reduces the R* relative to
the individual AH,, predictions. Here we show cross-validated

test predictions only for stable materials with hull energies Ey; = absolute error (MAE) predictions (top row) and two materials
0 eV/atom, since model performance begins to degrade for test with high MAE predictions (bottom row). Detailed inves-
set predictions of unstable materials with E;; > 0.025 eV/atom, tigations on potential sources of error and uncertainty in the
as discussed in the Supplementary Section 4. d’GNN predictions and the underlying NEB calculations
Figure 3d shows the true positive rate (TPR) vs false positive themselves are discussed in Supplementary Section 3 and
rate (FPR) when using the regression model as a binary classifier Supplementary Section 4 (e.g., paths with high atomic overlap or

to identify whether a given path’s E, is less than a chosen end points corresponding to split vacancies).
threshold. For low thresholds of E, ~ 1 eV, the model has an 8 Limitations, Merits, and Post Hoc Improvements to
times higher TPR than FPR. We therefore expect the model to the Original Model. Still, the original model exhibits a
produce few false positives when performing a preliminary suboptimal TPR of ~0.13 for E, < 1 eV, and will therefore likely
6477 https://doi.org/10.1021/acs.chemmater.5c00021
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miss many fast diffusing materials during a screening exercise.
This is because of the very low likelihood of randomly sampling
low E, < 1 eV paths (Figure 4a), for which no simple descriptors
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Figure 4. Boxplot distributions of absolute and signed error of CV test
set predictions for E, for the (a) original and (b) empirically shifted
model, binned as a function of the truth (DFT) value. The red line
corresponds to the overall MAE = 0.92 eV, the blue line corresponds to
the MAE = 0.54 eV for DFT-computed paths with 1 < E; < 4 eV, and
the purple line corresponds to y = 0. (a) also shows the histogram
distribution of E, for the training example paths. (c) Empirical shift of
eq 9 helps correct for systematic error of the original model in
predicting E, extrema, which boosts TPR for E, < 1 eV by a factor of 4
relative to the original model (Figure 3d).

were a priori discovered that could reliably increase their
sampling in our original data set construction (Figure 6¢c). As a
consequence of this under-sampling, the model reverts
predictions toward the mean of the training data set. It
overpredicts and underpredicts the lowest and highest E,
paths, respectively, as seen in the signed error distributions
Figure 4a.

However, for the most commonly sampled paths within 1 <
E, S 4 ¢eV, the MAE of ~0.54 eV is almost half the overall MAE
(Figure 3c), which is substantially skewed by the large errors on
essentially nondiffusive paths of E, 2 4 eV. This raises two
important observations. First, the model is substantially more
accurate than the overall MAE for the majority of paths, which
can either compromise a sluggish diffusion network in concert or
represent a single rate-limiting path in an otherwise fast network.
Second, while the model underestimates, and MAE increases
for, entirely nondiffusive paths of E, 2 4 eV, the absolute

~
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accuracy is not relevant here as the model still predicts very high
E, that will correctly prevent these migration hops from
contributing to the modeled diffusion network.

Despite the tendency to overestimate the lowest E, < 1 eV
paths, the TPR for identifying these paths is a factor of 8 higher
than the FPR. A high TPR to FPR ratio is more important than
just the absolute TPR value for materials discovery models
meant for use in high screening exercises, as it allows one to hone
in on interesting materials while avoiding the highly expensive
downstream validation (i.e.,, subsequent DFT calculations or
experiments) of unsuccessful/uninteresting materials. In fact,
since many positives are still predicted in our high-throughput
screening, as discussed in subsequent sections, and these are
much more likely to be TPs than FPs, the current version of the
model will be useful for a preliminary screen of identifying.
Boosting the absolute value of the TPR, i.e, not missing
additional promising candidates, will be the priority of future
work. This could focus on using the current screening
predictions of low E, paths (next section) as the search space
to target low E, paths with much greater likelihood for
additional DFT data collection and subsequent model improve-
ment.

A more immediate but ad hoc solution to boost TPR leverages
the systematic error in the model, i.e., the signed error trend in
Figure 4a. One could optionally fit a linear regression model that
shifts the originally predicted activation energies, E38, to
minimize the error with respect to the DFT-calculated activation
energies, Ex' ", via E3"8 = m - EX*" + b. By shifting the model-
predicted activation energies according to the optimal m = 0.62
and b = 0.98,

E, =Ey® —b— (m — 1)-EJ® (9)
one can systematically improve very low and very high E,
predictions (Figure 4b) and 4-fold increase the TPR to 0.52 for
the E, < 1 eV threshold. As expected, this empirical shift slightly
increases the FPR, but crucially, the TPR to FPR ratio remains
unchanged at ~8. Thus, we expect to proportionally waste no
more time in the downstream validation of uninteresting
materials while significantly boosting the number of potential
candidates captured in the screening.

High-Throughput Screening. As shown in Figure Sa for
one example material, we first enumerate all possible
inequivalent O—O paths in the crystal structure (up to S A),
then use d’GNN to predict { AH, } for all p, and finally assign the

predicted activation energies to each possible symmetrically
equivalent path in the migration path network. A critical aspect
of our screening is the bootstrapped uncertainty metric, o

which we use to eliminate materials with uncertainty above a
chosen threshold. From hereon we only show materials
predictions where the average uncertainty across all paths in a
given material, {p}, is below a threshold, (6,)(py < 0.75 eV.
Figure Sb shows the distribution of all computed activation
energies and vacancy formation enthalpies (AH, = AHP<0,4>)

across these screened compounds, both of which are highly
skewed. The raw screening data, including the high uncertainty
predictions, also reveals anomaly/outlier predictions that can be
readily identified as out-of-distribution materials with respect to
our training data; these are therefore discarded on the basis of
uncertainty (Supplementary Section 4).

Our goal is then to predict the temperature-dependent oxygen
vacancy diffusivity tensor, D, in a high-throughput manner to
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Figure S. (a) Visualization of the mp-6456 structure (LiNbGeOS5), the predicted {AHP,} for all paths less than S A (color-coded by E,) with white

circles for AH,, , and migration path network (red spheres are oxygen atoms, edges are paths color-coded by E,). (b) Distribution of E, and AH,,
across all screened structures, color-coded by Ey, threshold. For only near hull materials Ej; < 0.025 €V/atom: (c) Mean diffusivity vs min(E,) for all
structures, color-coded by E,. (d) Arrhenius plot of the mean diffusivity vs inverse temperature. (e) High-temperature diffusion anisotropy vs mean
diffusivity and (f) the anisotropy ratio between high and low temperatures vs the change in mean diffusivity, where the colorbar represents the material
count. For materials with non-null Au%’ =° (g) minimum host stability vs minimum vacancy formation energy, color-coded by mean diffusivity. The
dashed black line depicts y = —x — 1, an approximate lower bound to the host vs defect stability correlation. (h) min host stability (gray circles) and max
host stability (orange circles) are connected by a red line. Within the cyan inset, materials satisfying the strict set of TCH down-selection criteria are

color-coded by mean diffusivity.

identify materials with useful (i.e., fast, slow, aniostropic)
diffusivities and to elucidate relevant correlations between
vacancy defect thermodynamics, kinetics, host stability, and
chemistry. Given the vacancy sites, their energies, the
connectivity of sites, and transition state energies, the master
equation for the diffusivity is solved directly at each temperature
T. The direct solution,’” implemented in the open source
Onsager software (https://github.com/DallasTrinkle/
Onsager), is more computationally efficient than a Monte
Carlo approach, and accuracy is limited only by roundoff error.
Using the d*GNN predictions, we can therefore obtain the
temperature dependent oxygen vacancy diffusivity tensors, Dy,
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for each screened material. Units for all reported diffusivity
values are in cm?/s.

Because our model is less accurate for metastable and unstable
materials that are less likely to be able to be synthesized, we show
Dy (T € [800,1500] K) predictions in Figure Sc—f only for
materials with E; < 0.025 eV/atom. We denote the eigenvalues
of Dy as Ay, their average as the mean diffusivity, A, and the ratio
between the maximum and minimum eigenvalues as the
diffusion anisotropy, A7*° = A7™/A7™. For a given material, we

plot /TISOO vs the minimum activation energy min(E,) and color-

coded by the average of all paths, E,. As expected, a small
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min(E,) is a necessary but insufficient criteria for a large
diftusivity, as up to 8 orders of magnitude change in diffusivity
can be observed for materials with min(E,) < 0.5 eV. This
indicates the importance of a screening model that can estimate
activation energies of all possible (including high E,) paths in a
structure as well. Figure 5d shows an Arrhenius plot of diffusivity
and the orders of magnitude change among different materials
and across temperatures, some of which deviate from Arrhenius
behavior in the modeled temperature range (see Supplementary
Section 7 for details). Figure Se reveals that most materials have
near-isotropic diffusivities, but some can have A7*™ as much as 8
orders of magnitude greater than min. furthermore, among those
with the highest mean diffusivities (e.g,, >107® cm?/s), a higher
percentage of materials tend also to have large A3 This
anisotropy is also highly temperature dependent, i.e., some
materials that are isotropic at high temperature become highly
anisotropic at lower temperatures (Figure 5f).

Among our screened materials, we can isolate those with
interesting predicted diffusivity properties (see Supplementary
Section 6), a sampling of which is shown in Figure 6 and
summarized in Table 1. These materials were selected for (a)
large mean diffusivity, (b) small mean diffusivity, and (c) large
mean and highly anisotropic diffusivities, respectively. Materials
(a) and (c) respectively contain a 3d-connected and 2d-
connected network of low E, paths, while material (b) only
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Figure 6. For three example structures with (a) large mean diffusivity,
(b) small mean diffusivity, and (c) large mean and highly anisotropic
diffusivities, we plot AH,, for all paths less than 5 A (color-coded by E,,)
and visualize the migration path network, with red spheres representing

oxygen sites and edges representing possible migration paths (also
colored by their E,).
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Table 1. Summary of the Diffusivity Related Predictions

(Formula, MP ID, min(E,), E,, max(E,), 4,54, and A2 for
the Three Example Structures Shown in Figure 6
ID formula min(E,) E, log(zlsoo) log(A7%68)
mp-8846 Ba,NbO} 0.6 33 -5.1 0.2
mp-3405 NaAl,,0,, 2.8 6.6 -16.1 02
mp-28075  K,Ti,O, 1.0 3.0 -57 3.

possesses a periodically connected migration network with
relatively high E,. Note that on an absolute scale, 65 of the
~3700 (or ~2%) screened oxides are predicted with min(E,) <
1 eV. Even though the absolute number of materials with
min(E,) < 1 could likely be higher (possibly by an heuristic
factor of 2—6, depending on whether one uses the TPR for the
original or empirically shifted model), these identified
candidates are highly likely to be true positive rather than false
positive identifications because of the high TPR to FPR ratio.

Defect Thermodynamics, Kinetics, and Host Stability
Correlations. Some materials discovery exemplars necessitate
identifying candidates with simultaneous target metrics for
vacancy defect thermodynamics, diffusivity, and host stability, all
of which may be interdependent. Defining the oxygen chemical
potential difference with respect to the reference state, Ay = pio
— 5 and using MP-computed formation energies for all oxides
in the screening space, we compute a stability range, denoted
Ay‘é 0= [Apo | pr(Apo) = 0]. This yields the Aug range over
which a given material is stable, i.e., its grand energy above the
hull, ¢y, equals zero. Figure Sg shows a strong correlation
between the minimum value of the stability range, min-
(A= °), vs the minimum vacancy formation energy in a
given material, with an approximate lower bound of min-
(A% =% ~ —1 eV — min (AH,). This trade-off constrains the
space in which materials with desired host and defect stability
can be designed. Meanwhile, neither criteria strongly correlates
with the diffusivity 4,50, which can be tuned more
independently.

Thermochemical Hydrogen Production Materials
Screening. One example where all three down-selection
criteria are important is the identification of metal oxides for
thermochemical hydrogen (TCH) production, ie. water-
splitting via a direct two-step thermal redox cycle.””*' Criterion
#1 is that AHy, € [2.5,4.0] eV,* which has been addressed by a
variety of surrogate model-based screenings. Criterion #2
necessitates that Ay‘(’;” =0 span, or at least intersect, the typical
TCH redox oxygen chemical potential range between thermal
reduction and water-splitting, Ault = [-3.0,-2.5] eV, 1950
Finally, Criterion #3 for screening TCH materials, hitherto
unexplored via high-throughput screening, is that the oxygen
vacancy diftusivity, shown in Figure Sh, be as fast as possible.

The 4,5y, color-coded materials in the cyan inset box are the
small fraction of screened compounds that satisfy both Criteria
#1 and #2. As shown by the red line connecting min(Apf =)
and max(Au®' =°), many materials possess an excellent stability
range for TCH, but this is inextricably correlated with vacancy
formation energies that are too high, which eliminates a large
swath of candidates. Only O(10*) candidates survive these
downselection criteria, as examined in more detail in
Supplementary Section 8.

The selection of the cationic chemical space in the present
work excludes the 3d transition metals, with the exception of Ti,
which occurs mostly as Ti**ina d® configuration. On one hand,
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this selection allowed us to limit the scope of this initial work for
d’GNN to nonmagnetic DFT calculations. On the other hand,
this selection also addresses the hypothesis that high-perform-
ance materials for TCH might be found outside the realm of 3d
transition metal oxides, where the vast majority of recent
research efforts has been focused.”’ While numerous discoveries
of 3d oxides have been made over the past decade, especially
including manganates,‘w_42 the general trend remains that these
oxides split water only under dilute H,:H,O conditions.*"**
This drawback can be attributed to an insufficient reduction
entropy, resulting from the presence of repulsive defect
interactions that reduce the (atomic) configurational entropy
contribution®® and from the lack of electronic entropy
contributions.*”**

The strong electron correlations in the 3d shell cause localized
electronic states, which nevertheless experience significant
interactions with the ligands,55 as well as the existence of
multiple oxidation states. As a consequence, the excess electrons
introduced by the O vacancy defects tend to be strongly bound
to the defect site, resulting in a large ionization energy, which
precludes the electronic entropy contribution.’® While there
could be exceptions to this trend for suitable combinations of the
transition metal electron configuration and the ligand
coordination environment,”” a potentially rewarding alternative
materials search strategy could focus on cations with more
delocalized nonmagnetic electronic states, as included in the
present work, where a smaller ionization energy could enable
water splitting under much more concentrated H,:H,0
mixtures,”® which is currently achieved only in CeQ,. While
the present work does not directly address the ionization energy
and resulting electronic entropy, it does provide the basis for
selecting candidate materials for additional electronic structure
studies with beyond-DFT methods that are required to address
this question. Because previous related work”* (i.e., a vacancy
formation energy-only model) “re-discovered” many known
TCH materials containing 3d transition metals, we anticipate
this work could identify potential candidates but in this
unconventional TCH space, within which we are unaware of
any existing TCH demonstrations.

B CONCLUSIONS

We have provided the generalized d*GNN framework that can
perform surrogate model predictions for NEB energies in
arbitrary crystal structures and vacancy migration paths. Relying
only on a host structure input and the specification of the end
points corresponding to the vacancy migration hop, the model
facilitates rapid inference on vacancy thermodynamics (for-
mation energies) and kinetics (migration activation energies),
while respecting relevant symmetry constraints thanks to an
intermediary Transformer encoder and MLP decoder archi-
tecture. Then, for a given material and its vacancy sites, their
predicted formation energies, the connectivity of sites, and
predicted migration activation energies, the master equation for
the diffusivity is solved directly at each temperature T. Many
materials can then be screened in a high-throughput manner to
identify candidates with anomalous/interesting vacancy dif-
fusivity properties. As a proof-of-concept, we conducted high-
throughput screening of a large chemical space of metal oxides,
combining neutral vacancy defect thermodynamics, kinetics,
and host stability, to identify promising candidates for
thermochemical hydrogen production via two-step water-
splitting redox cycles.
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Several outstanding challenges remain and point to exciting
areas for improvement in future work. The chemical space across
which the model has been trained is limited to 14 cations, so
expanding the high-throughput NEB calculations to more
diverse (but more challenging for DFT) materials like oxides
with 3d transition metals and rare earths will improve its
applicability for materials discovery across different domains.
Similarly, our DFT training data only consists of NEB
trajectories for oxygen vacancy migration, and this could be
extended to different element types to again improve
applicability in other materials discovery/modeling domains.
The current form of the model also only accounts for vacancy
migration events occurring between lattice oxygen sites, while
hops between interstitial sites are often favorable.”’ These
additional pathways potentially could be accounted for if a
suitable modification of the current base model can be derived,
but such a modification would also require substantial additional
data collection.

As discussed in more detail in Supplementary Section 2, this
initial demonstration only focused on neutral oxygen vacancies,
which often diffuse more slowly than charged vacancies (e.g,
Vg) in materials with band gaps. This tendency is apparent in
Figure 7, in which we show the correlation between E, for
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Figure 7. Comparison of calculated migration activation energies for
oxygen vacancies in the 0 and +2 charge state extracted from various
literature reports.'>'#**%° The black dashed line represents y = x, and
the cyan line represents the line of best fit (y = 0.43x + 0.07).

vacancies in the neutral and +2 charge states for several materials
studied in previous computational work. E, is almost universally
smaller when vacancies are charged, often significantly so.
Therefore, in cases where charged vacancies are thermodynami-
cally favored compared with neutral vacancies at the equilibrium
Fermi level, we anticipate that our predictions represent at worst
a lower bound on the vacancy diffusivity. Any fast diffusers
currently predicted by the neutral vacancy model would remain
correctly predicted, although it is clear that some fast diffusers
that rely on charged vacancy migration will be missed by the
current model. Thus, the TPR rate of our model may decrease
somewhat, while, crucially, the FPR will remain unaffected.
Therefore, it would be beneficial in future work to repeat certain
calculations with charged vacancies*”*°~%* and to estimate the
effect of charge on diffusivity predictions in a large-scale
screening.

Finally, with the advent of machine learning methods that can
model potential energy surfaces of inorganic materials across
large portions of the periodic table,*>**~* it will be interesting
to compare the relative accuracy of this method to that of NEB
calculations performed using machine learned force fields, which
may not have been explicitly trained on high energy migration
barriers.
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