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Several models are in common use for the description of the thermal and gas partial pressure dependence of
conductance of semiconducting materials. Herein these models are reviewed, including their physical origins
and mathematical forms. The models can be divided into three main categories: models based on the Arrhenius
equation, models based on power laws, and miscellaneous expressions. In general, the Arrhenius form is used
to describe the thermal dependence of conductance where the activation energy arises from the Schottky
barrier, band gap, or a combination of the two. Power laws are typically used to describe the gas partial
pressure dependence of conductance and have their physical origin in classical reaction kinetics. Despite their
simplicity, the Arrhenius equation and power laws have been used successfully to model conductance for a
wide range of semiconducting materials. Other models have their own advantages and are here are collected
under miscellanea.
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1. INTRODUCTION
The temperature and gas partial pressure dependence of
conductance, G�T �p�, is an important and somewhat elu-
sive function with far-reaching implications in the fields
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of gas sensing, catalysis, organic electronics, pH mea-
surement, etc. Behind the scenes, gas sensors play key
roles in automobiles, hydrogen fuel cells, deep-sea div-
ing equipment, anesthesia monitors, respirators, spectrom-
eters, refineries, and water treatment plants. Heterogeneous
catalysts are essential components of large-scale indus-
trial synthesis. Organic electronics promise to increase the
accessibility and decrease the price of electricity and elec-
tronic devices. Finally, pH measurements are paramount
in a number of different fields including but not limited
to medicine, biology, and chemistry. These applications
provide ample motivation for the development of robust
mathematical models for G�T �p�.
The temperature dependence of conductance is often

modeled using the Arrhenius equation where the activation
energy is usually assumed to correspond to the band gap
or the Schottky barrier at grain boundaries. This model
has been applied successfully to many semiconducting
thin-films,1–7 C60/C70 mixture films,8 and Cu–Al–O thin-
films.9�10 In contrast, the dependence of the conductance
on the partial pressure of the adsorbing gas molecules
is frequently approximated using a power law where the
power varies across adsorbing species and substrates. For
example, it has been shown that in the presence of a reduc-
ing gas at the surface of gallium oxide, conductance fol-
lows the relationship,

G∝ p1/2
rg (1)

where G is the conductance and prg is the partial
pressure of H2 or CO.11 Similar simple relationships
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have been found for other adsorbate/adsorbent
combinations.1�4�6�12–14 In addition to the Arrhenius equa-
tion and the power law model, which have their physical
origins in classical chemical kinetics, there are models
derived from quantum mechanics and semiconductor
physics that also have been used to describe G�T �p�.
This review will present the common models for

G�T �p�, explain their physical basis, discuss the sig-
nificance of their important parameters, and note some
examples of systems to which they have been applied suc-
cessfully. This information is generally available in the
literature, but it is scattered across journals in several
distinct fields and sometimes in difficult-to-acquire refer-
ences. (It took the authors several months to track down
a copy of Ref. [15].) It is hoped that gathering this infor-
mation together into a single paper will be of value to the
community of scholars who are interested in the thermal
and gas-partial-pressure dependence of conductance. The
paper is organized with one section for each of the follow-
ing: the Arrhenius Model for G�T �, the Power Law Model
for G�p�, and miscellaneous models for G�T �p�.

2. ARRHENIUS EQUATION FOR G�T �
The temperature dependence of conductance is most com-
monly modeled with the Arrhenius equation

G�T �=G0 exp
(
− Ea

kT

)
(2)

Here G0 is the frequency factor, Ea is the activation
energy, k is the Boltzmann constant, and T is the absolute
temperature. Basically, this expression is the product of
two factors; an “attack frequency” (G0) times a “hopping
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probability,” exp�−Ea/kT �. While it is not surprising that
G�T � mirrors the Arrhenius equation when one can iden-
tify an energy barrier to charge transport, the physical sig-
nificance of the activation energy varies across systems.
In general, the activation energy arises from some potential
barrier that an electron (or other charge carrier) must over-
come in order to transfer charge. For electron conduction,
the most common forms of this barrier are
(1) the energy gap between the highest occupied and low-
est unoccupied bands and
(2) Schottky barriers at grain boundaries.

When charge transport occurs by proton hopping, Ea cor-
responds to the barrier between two adjacent local min-
ima along the proton hopping path. In the case of charge
conduction by electrons, G0 is the theoretical maxi-
mum conductance that the material would have at infinite
temperature.16 In the proton transfer case, G0 is the vibra-
tional frequency with which a proton in one of the local
minima along the hopping path attacks the potential barrier
to the next minimum. In other words, it is the vibrational
frequency of the local mode vibration of the proton that
carries the proton in the direction of the transition state.
Below are several references to particular cases illustra-

tive of the physical interpretation of the energy exponent in
the Arrhenius model. Before discussing these cases, how-
ever, the physical the origins of the barrier are described.

2.1. Arrhenius Energy Parameter Arising from a
Band Gap

The gross features of semiconductor band structure are
shown in highly stylized fashion in Figure 1. An intrin-
sic semiconductor will display Arrhenius-type behavior in
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Fig. 1. Schematic of band structure in various semiconductors.

the temperature dependence of conductance when thermal
energy is sufficient to excite electrons across the band gap
between the valance band and the conduction band. This is
shown schematically in the LHS of Figure 1 wherein the
red rectangle denotes the valance band, the blue rectangle
denotes the conduction band and the Fermi level is noted
by the horizontal dashed line.

For a p-type semiconductor, holes are introduced into
the valance band, (denoted by “+” within a black circle
in Fig. 1.) typically by replacing some of the atoms in
the material with atoms having fewer valance electrons
and often a smaller nuclear charge (e.g., C-for-O substitu-
tion). This substitution depletes electrons from the valance
band thereby lowering the Fermi level. In addition, due to
the weaker nuclear charge associated with the substituent
atom, some of the bands “float up” in energy,17 a few of
which may rise into what would constitute the gap in the
undoped structure. These bands will be unoccupied owing
to depletion of electrons from the valance band due to
the substitution. The activation energy then corresponds to
promotion of an electron from the valance band into one
of these unoccupied gap states.

For an n-type semiconductor, electrons are introduced
into the conduction band, (denoted by “−” within a black
circle in Fig. 1) typically by replacing some of the atoms in
the material with atoms having more valance electrons and
often a greater nuclear charge. The introduction of an oxy-
gen vacancy in a metal oxide has the same effect, because
removal of an oxygen atom depletes more valance spin-
orbitals than valance electrons.17 With the substitution,
some bands are pulled down from the conduction band into
what would constitute the gap in the undoped structure.17

These bands will be occupied owing to presence of extra
electrons. The activation energy then corresponds to pro-
motion of an electron from one of the occupied gap states
into the conduction band.

Cu–Al–O thin films have gained popularity in the last
20 years as ozone sensors, photovoltaic systems, and
p-type transparent conducting oxides.10 Their use as ozone
sensors has prompted studies of the thermal dependence of
conductance, which has been shown to exhibit Arrhenius

behavior.10 In these systems, the activation energy is gen-
erally considered to correspond to the thermal energy
required to excite a valence band electron into a low-lying
unoccupied acceptor state. For Cu–Al–O and Zn-Doped
CuAlO2, the activation energy ranges from 0.05 to 0.2 eV
depending on the oxygen composition.9�10�18

Perovskite-type oxides (such as
Pr0�8Sr0�2Mn0�8Co0�2O3−x, Sr0�85Ce0�15Fe0�5Co0�5O3−x, and
SrFeyCozOx) are also subjects of intense research because
of their applications in solid-state chemical sensors,
oxygen permeation membranes, and solid oxide fuel
cells.19�20 Like Cu–Al–O, these oxides exhibit p-type
semiconductor behavior and Arrhenius-type G�T � depen-
dence, wherein the activation energy corresponds to
the energy gap between the valence band and low-
lying unoccupied states. For Pr0�8Sr0�2Mn0�8Co0�2O3−x and
Sr0�85Ce0�15Fe0�5Co0�5O3−x, the thermal activation energies
are reported to be 0.22 and 0.18 eV respectively.19�20 Also
of note, perovskite-type oxides that exhibit mixed conduc-
tivity are suitable materials for temperature-independent
(Ea → 0 eV) gas sensors.21 A mixed conducting material
is one that exhibits both hole and electron conductivity.
Tunney et al. have shown that lnG for a perovskite-
type oxide with the composition SrFe0�25Co0�75Ox is
temperature-independent (Ea = 0�002–0.04 eV) between
350 and 500 K.19

The thermal activation of conductance is also observed
for polycrystalline tin oxide and Ga2O3. For p-type Ga2O3

thin films, the activation energy in the presence of the
reducing gases CO and H2 is 1.2 eV.1 Given that the
band gap in Ga2O3 almost certainly exceeds 4 eV,22 if one
assumes that the reducing gas is donating an electron into
a hole within the valance band, this result suggests that
unoccupied gap states lie far above the valence band edge.
For polycrystalline tin oxide, which is an n-type semicon-
ductor and commonly used as a CO, H2, and O2 sensor,
the activation energy ranges from 1.3 to 2.00 eV depend-
ing on the sample processing.23 Lee et al. found that sam-
ples prepared via hot isostatic pressing show lower values
for the activation energy than those prepared by normal
sintering.23 They were able to demonstrate that the differ-
ence in activation energy between normally sintered and
hot isotactic pressed samples is essentially independent of
grain boundary transport and they therefore concluded that
the activation energy in polycrystalline tin oxide results
from the blocking effect of the pores that are present in
normally sintered samples.
Takashi et al., showed plasma-polymerized C60

to exhibit semiconductor-like properties, specifically
Arrhenius-type conductance at high temperatures.8 Assum-
ing that C60 is an intrinsic semiconductor and taking
the activation energy to be half the band gap (Ea =
Band gap/2),24 the predicted band gap is approximately
2.1 eV. This value is consistent with the literature value
of 1.9 eV.25
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2.2. Arrhenius Energy Parameter Arising from a
Schottky Barrier

Schottky barriers arise from the accumulation of charge at
surfaces and grain boundaries. Assuming that the radii of
the semiconductor grains are much greater than the Debye
length (LD), the one-dimensional Poisson equation,

d2V �x�

dx2
=−��x�

��0
(3)

can be used to describe the potential energy V �x� of elec-
trons in the depletion layer around a grain boundary. Here
x is the coordinate variable denoting normal distance from
the surface, � is the relative permittivity of the material and
�0 is the vacuum permittivity. If all the donor atoms are
ionized, the space charge density, ��x�, can be reasonably
approximately using the abrupt change model,

��x�= qNd ∀0< x < w (4a)

��x�= 0 ∀x > w (4b)

Here q is the elementary charge and Nd is the density
of donors (number per unit volume). The relationship
between ��x� and the surface charge density (Qsc) is

Qsc =−��x�w =−qNdw (5)

where w is the depletion depth. Multiplying-��x� by w is
equivalent to assuming that all charges in the depletion
layer migrate to the surface. This assumption is a key step
in connecting the physics of semiconductors to the surface
chemistry.
Subject to the boundary conditions, V �x=w�=dV �x=

w�= 0, the solution to Poisson’s Eq. (3) is,

qV �x�= q2 Nd

2��0
�x−w�2 (6)

where Eq. (6) follows directly the work of Sze.26 The sur-
face potential barrier (Vs) is given by Eq. (6) evaluated at
x = 0, which yields,

qVs = q2Ndw
2/2��0 (7)

Recognizing that the surface charge density arises from
the migration of electrons generated by donors within the
depletion layer migrating to the surface, one can write

Qsc =−Ndw (8)

It follows that
Vs = qQ2

sc/2��0Nd (9)

which is the well known expression for the Schottky bar-
rier that arises when a density of Nd donors within the
depletion region of depth w gives rise to a surface charge
density as described in Eq. (8).
Schmitte et al.7 and Lantto et al.3 have reported several

instances where the activation energy corresponds to the

Schottky barrier at grain boundaries. For SnO2 in the pres-
ence of CO, the Schottky barrier varies from 0.6 to 0.9 eV
depending on the SnO2 film thickness.7 Theoretical analy-
sis of the thermal dependence of the Schottky barrier cor-
roborates this finding. Lantto’s3 derivation will be followed
closely here.
The starting assumption is that ambient oxygen

“ionosorbs” to the surface wherein after adsorption, the
O2 molecules become anionic by capturing electrons from
the bulk. (See Ref. [27] Chapter 2) By Eq. (9), the
Schottky equation for the barrier energy (eVs) on the
surface is

eVs = e2Q2
sc/2��0Nd (10)

where e is the elementary charge, Qsc is the surface charge
density arising from ionosorbed oxygen, ��0 is the per-
mittivity of the semiconductor, and Nd is the concentration
of electrons arising from donors. If the energy of the sur-
face states to which oxygen ionosorbs is denoted Et , for
Et substantially above the Fermi level e�, an approximate
expression for the population of the surface states from
Fermi-Dirac statistics is,

Qsc = Np�pO2
� T � exp

(−�Et − e��

kT

)
(11)

here Np is the surface density of physisorbed oxygen,
which depends on the partial pressure of oxygen pO2

and
the absolute temperature T . Defining �E to be the energy
difference between the surface states (Et) and the top of
the Schottky barrier, (i.e., the energy of the conduction
band at the surface) Eq. (11) can be re-written as,

Qsc = Np�pO2
� T � exp

(
��E− e��

kT

)
exp

(−eVs

kT

)
(12)

As discussed by Morrison,27 for any physically reasonable
value the barrier potential severely restricts the magnitude
of the surface charge to a small near-constant, (the so-
called “Weisz limitation”28) so Et is effectively constant.
This is used to justify the rearrangement of Eq. (12) to
yield,

Np�pO2
� T �

Qsc

= exp�−��E− e��/kT �

exp�−eVs/kT �
(13)

Equation (13) can be solved to find the temperature and
gas partial pressure of the barrier energy (eVs) on the sur-
face if the explicit form of the density of physisorbed
molecules (Np�pO2

� T �) is known. Clifford15 derived such
an expression by assuming that a quasi-equilibrium is
established between adsorption and desorption processes
on an exponential distribution for surface sites. The result-
ing areal density of physisorbed molecules (the deriva-
tion of the areal density, which is non-intuitive, appears in
Clifford’s thesis,15 but this source is not readily available
so it is reviewed here in Appendix A) is given by,

Np�pO2
� T �= N0�aPO2

�kT /E0 (14)
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Here N0 and a are experimentally determined constants.
E0 is a parameter characteristic of the surface and has units
of energy. a is a scaling factor with units of reciprocal
pressure that is related to the rate constant for the des-
orption process (see Appendix A). Setting the right side
of Eqs. (13) and (14) equal to one another and solving
for (eVs) yields the desired thermal and oxygen partial
pressure dependence of the Schottky barrier,

EB = eVs = �E− e�+kT ln�N0/Nt�

+ �kT �2

E0

ln�aPO2
� (15)

It is clear from this model that adsorbing gas molecules
play an important role in the temperature dependence of
the Schottky barrier and therefore G�T �.

2.3. Arrhenius Energy Parameter Arising from a
Proton Hopping Barrier

The Arrhenius model has also proven successful for mod-
eling conductance when the charge carriers are other than
electrons. Cai et al.29�30 used the product of an Arrhenius
factor and the Langmuir isotherm (a surface coverage fac-
tor) to model thermal dependence of charge transport in
	-alumina.

Cai et al.29�30 developed a model based on the assump-
tion that two types of charge carriers contribute to the
overall conductance in 	-alumina; protons hopping among
vacant cation sites31 and hydronium ions moving on the
surface. The movement of hydronium is presumed to take
place by the Grotthuss mechanism32 whereby successive
protons shift across the double-well hydrogen bonding
potential between adsorbed water molecules, effectively
moving the hydronium. Denoting these carriers as (H) for
protons and (w) for hydronium, the conductance may be
expressed as,

G= B�vHnH + vwnw� (16)

where vH (vw) and nH (nw) are the drift velocities and con-
centrations of protons (hydronium) respectively and B is
an overall scaling-constant/units-conversion factor, which
includes geometric factors specific to the measurement
apparatus etc.

The drift velocity is modeled by reference to the hop-
ping mechanism. In a hopping process, the drift velocity
is given by the vibrational frequency of the surface-bound
charge carrier (
0), times the distance it must hop to
reach an adjacent surface site (d), times the probability of
hopping �(T ),

vi = v0idi��T � (17)

where the subscript (i= H�w) denotes the type of charge
carrier. The hopping probability is given by a Boltzmann
factor dependent on the hopping energy barrier (Ebi),

��T �= exp
(
Ebi

kT

)
(18)

where k is the Boltzmann constant and T is absolute
(Kelvin) temperature. For a particle of charge (q) in the
presence of an applied electric field (E), the hopping bar-
rier is decreased by an energy Eqdi/2 in the forward direc-
tion and increased by the same quantity in the reverse
direction. The overall drift velocity is therefore given by
the difference between the forward and reverse velocities,

vi = v0idi�E > Ebi−Eqdi− v0idi�E > Ebi+Eqdi (19)

Here (�E > Ebi +Eqdi) denotes the probability that the
charge carrier has an energy in excess of the hopping
barrier, E > Ebi +Eqdi. Substituting Eqs. (18) into (19)
yields,

vi = v0idi exp
(
Ebi−Eqdi

kT

)
− v0idi exp

(
Ebi+Eqdi

kT

)
(20)

The concentration ni is taken to be given by the total
concentration (Ni) of possible binding sites for the charge
carrier times their fractional occupancy (�),

ni = Ni��T � (21)

The Langmuir isotherm is used to model the tempera-
ture (T ) and gas partial pressure (p) dependence of the
fractional occupancy,

��T �p�= Kipi

1+Kipi

(22)

where Ki is the equilibrium constant expressing the par-
titioning between the gas and surface-bound states of the
adsorbate species that gives rise to the surface charge car-
rier. This equilibrium constant may be written in terms of
the molar free energy of binding (�Fi) as,

Ki = exp
(−�Fi

RT

)
(23)

where R is the gas law constant. Subsequent to their orig-
inal work, Cai et al. elaborated on the partitioning of
the free energy of binding into its enthalpic and entropic
contributions.30 More recently present authors used the
same concepts to extend the model to a wide band gap
semiconductor.33

The overall mathematical model that describes conduc-
tance arising from proton and hydronium charge carriers
on 	-alumina is arrived at by expanding Eq. (16). The
functional form of the concentration factors is arrived at
by substituting Eqs. (23) into (22) and subsequently (22)
into (21). The functional form of the drift velocity factors
is Eq. (20). The overall expression is,

G�T �P� = B�v↓Hd↓H exp��E↓bH +Eqd↓H/2�/kT �

− v↓Hd↓H exp��E↓bH −Eqd↓H/2�/kT ��

×N↓H��exp��−�F �↓H�/RT �P↓H�

/�1+ exp��−�F �↓H�/RT �P↓H��

+ v↓wd↓w exp��E↓bw+Eqd↓w/2�kT �

− v↓wd↓w exp��E↓bw−���� (24)
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In this expression there are two types of Arrhenius-
like factors: factors that depend on a hopping barrier
(Ebi ±Eqdi/2), and factors that depend on a desorption
energy (�Fi). Since the energy parameters in these two
factors differ, the two factors dominate in different tem-
perature regimes, which produces the dramatic fluctuations
with temperature seen in measurements of the conductance
of 	-alumina.34

Figure 2 shows data for the thermal dependence of con-
ductance of 	-alumina together with the best fit using
the model of Cai et al.29 In region 0 the increasing ther-
mal energy increases the likelihood that H+ in hydronium
can surmount Ebw and conductance increases with increas-
ing T . In region I, ��T �p� decreases as water is desorbed
from the surface and conductance decreases with increas-
ing temperature because the scaffold for proton mobil-
ity in hydronium is lost. In region II increasing thermal
energy increases the likelihood that H+ among cations
sites within the alumina can surmount EbH and conduc-
tance again increases with increasing T .

3. POWER LAW MODEL FOR G�p�
The power law model for the dependence of conductance
on the partial pressure of adsorbing gas molecules is given
by the expression

R�pg�∝ pn
g ⇒G�pg�∝ p−n

g (25)

where (pg) is the partial pressure of the gas and n is a con-
stant that depends on the nature of adsorption, oxidative
or reductive, and the species.

3.1. Power Law Arising from Schottky Barriers as
Derived from Adsorption Kinetics

Merging the theory of Schottky barriers and adsorption
kinetics, Yamazoe and Shimanoe35 provide a theoretical
basis for the value of n for n-type metal oxide semicon-
ductor (MOS) gas sensors.

Fig. 2. Data for the thermal dependence of conductance of 	-alumina
and best fit using the model of Cai et al. in Ref. [29], from which
the figure is adapted. (Reprinted with permission from [29], S. Cai,
et al., J. Phys. Chem. C 111, 5506 (2007). © 2007, American Chemical
Society.)

The first step in the derivation is to establish the
relationship between the depletion layer and the sensor
resistance.
Solving Eq. (7) for w yields

w =
(
2��0
qNd

Vs

)1/2

(26)

Since the definition of the Debye length is LD =
���0kT /q

2Nd�
1/2, Eq. (26) becomes

w = LD

(
2q
kT

Vs

)1/2

(27)

which can be rearranged to generate

Vs =
kT

2q

(
w

LD

)2

(28)

The concentration of electrons at the surface [e] is
then proportional to the density of conduction electrons
multiplied by the Boltzmann probability that they will
overcome the Schottky barrier, which may be written
algebraically as,

e�= n0 exp
(
−qVs

kT

)
= Nd exp

(
−m2

2

)
(29)

where n0 is density of conduction electrons (n0 = Nd), k is
the Boltzmann constant, T is the absolute temperature, and
m is the reduced depletion depth, defined as m ≡ w/LD.
Assuming that Schottky barriers are the main source of
internal resistance, Yamazoe and Shimanoe35 suggest that
the resistance is inversely proportional to [e], i.e.,

R

R0

= exp�m2/2� (30)

Here R is the observed resistance of the semiconductor,
R0 is the bulk resistance, and their quotient, R/R0, is
termed the reduced resistance. Tunneling effects were
neglected because they do not affect m, which carries the
essential information for deriving the power laws.35

The next step in the derivation is to treat the adsorption
of oxygen, (or other oxidizing gasses or reducing gas).
This starts with the chemical equation for the adsorption
of oxygen to a MOS surface,

O2+2e− � 2O−
�ad� (31)

Denoting the rate constants for the forward and reverse
reactions as kf and kr respectively, the rate of formation of
O−

�ad�, (the subscript “ad” denotes that the ion is adsorbed
on the surface) is then given by,

dO−
�ad��

dt
= kfPO2

e�2−krO
−
�ad��

2 (32)

where PO2
is the partial pressure of molecular oxygen and

[O−
�ad�] is the density of O− at the surface. Rearrangement
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of the expression in Eq. (31) when equilibrium is achieved
yields,

KO2
PO2

e�2 = O−
�ad��

2 (33)

Here KO2
= kf/kr is the equilibrium constant for the oxygen

adsorption reaction in Eq. (31). Assuming that O−
�ad� is the

only charged adsorbate, it is solely responsible for Qsc;
therefore,

O−
�ad��=−Qsc

q
= Ndw (34)

Inserting Eqs. (29) and (34) into (33), generates,

KO2
PO2

N 2
d

[
exp

(
−m2

2

)]2

= N 2
dw

2 (35)

Dividing both sides by N 2
d , using m ≡ w/LD and taking

the square root of both sides produces,√
KO2

PO2

LD

exp
(
−m2

2

)
=m (36)

If one defines the reduced absorptive strength of oxygen as
x = �KO2

PO2
�1/2/LD, the above expression may be written

in the simplified form,

x =m exp
(
m2

2

)
(37)

Referencing Eq. (30), Yamazoe and Shimanoe35 obtain the
following expression for R/R0,

R

R0

= x

m
= �KO2

PO2
�1/2

w
(38)

Given that the power-law exponent may be defined by,

n≡ � logR
� logPO2

(39)

using the expression for resistance given in Eq. (38), dif-
ferentiation of logR with respect to logPO2

therefore yields
the power law exponent for oxygen adsorption,

n= 1
2
1− �1+m2�−1� (40)

According to Ref. [36] the experimental power law expo-
nent for oxygen adsorption on tin dioxide is 1/2. This sug-
gests that the depletion region formed by the formation of
surface O− is large, since Eq. (40) approaches 1/2 as m
increases. Experimentally determined m values for SnO2

range from 4 to 5.12, validating the power law model.37

The kinetic methods employed in determining the power
law exponent for reducing and oxidizing gases are very
similar to the above case for oxygen and may be found in
Ref. [35]. Thus, for the sake of brevity, a full derivation of
the power law exponent for reducing and oxidizing gases
will not be presented. For reducing gases, n becomes,

nrg =− p/2
1+q/�2m−2��

(41)

where p and q are the number of moles of reducing
gas molecules and ions respectively. For oxidizing gases,
n becomes,

nog =
z/�x+ z�

1+m−2
(42)

where z = KAPA/LD, KA is the equilibrium constant for
adsorption of the oxidizing gas, PA is the equilibrium par-
tial pressure of the oxidizing gas, KO2

is the equilibrium
constant for O2 adsorption, and PO2

is the equilibrium par-
tial pressure of O2. This model is consistent with find-
ings for SnO2, WO3, and In2O3 by Clifford and Tuma,36

Akiyama et al.,38 Guerin et al.,39 and Vuong et al.,40

respectively. The n values as predicted by the Yamazoe-
Shimanoe model are shown in Table I.

3.2. Power Law Arising from the Volkenstein
Theory of Catalysis

Regarding the Yamazoe-Shimanoe model, Geistlinger has
pointed out that, “The main point of criticism is that there
is no rigorous connection between the electronic state of
the surface and the electronic state of the bulk”11 and has
developed a model to address this shortcoming.
In Geistlinger’s approach, conductivity (�) is assumed

to arise from free conduction band electrons in the deple-
tion region near the surface, which may be given by,

��p� = e�SCR�n�z�p�	 (43)

where e is the unit charge, �SCR is the charge mobility
in the space charge region (depletion layer) and �n�z�p�	
is the average charge density, z being the surface normal.
A key in Geistlinger’s approach is therefore to relate the
concentration of electrons in surface states to adsorbate
partial pressure (p). Ultimately, the n values in the power
law (Eq. (16)) for the adsorption of H2 and CO on Ga2O3

are computed using the Volkenstein theory of catalysis.11

The Volkenstein model (VM) assumes that there exists
a spectrum of surface energy states that engage in vary-
ing degrees of partial charge transfer between the adsor-
bate and the surface. Within the spectrum there are two
levels, corresponding to neutral-weak and charged-strong
chemisorption. Geistlinger suggests that these states can
be identified in the solutions to the time independent
Schrödinger equation based on the following Hamiltonian,

Ĥ =− �
2

2m
� 2
r +Vlattice�
r�+W�
r− 
d�+U� 
d� (44)

Here Vlattice�
r� is the periodic potential of the lattice ions,
W�
r − 
d� is the coulomb potential of the adion, U� 
d�
is the electrostatic potential between the lattice and the
adion, m is mass and � is the reduced Planck constant.
The occupation probabilities of the two states correspond-
ing to neutral-weak and charged-strong chemisorption can
be calculated using Gibb’s grand partition function (Zchem),

Zchem =∑
j

∑
m

� exp
(
j�−Ejm

kT

)
(45)
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Table I. n values as predicted by the Yamazoe-Shimanoe (YS) and Geistlinger models, together with values derived from experiments.

Model Gas Sensing material n Temperature (�C) References

YS O2 n-type 1/2 ≥200 [35]
Reducing gas Semiconducting −1/2 [35]
Oxidizing gas Oxides 1 [35]

Geistlinger H2 Ga2O3 −1/3 577 to 677 [11]∗

CO Ga2O3 −1/3 [11]∗

Experiment O2 SnO2 1/2 445 [36]∗∗

NO2 WO3 1 300 [38]∗∗

O3 WO3 1 250 [39]∗∗

H2 SnO2 −1/2 250 [40]∗∗

CO SnO2 −1/2 445 [36]∗∗

O2 SnO2:Cu 1/6…1/2 374 [14]∗

CO SnOx −1/2 200–500 [13]∗

O2 SnO2 1/4 230 [4]∗

CO SnO2 −0.8…−0.3 Not reported [4]∗

CO and H2 Ga2O3 −1/3 550 to 650 [1]∗

O2 Ga2O3 1/4 900 to 1000 [1]∗

O2 ZnO 1/6…1/4 527 to 1627 [41]∗

Notes: ∗These sources report G∝ pn ⇒ R∝ p−n . ∗∗As reported in Ref. [35].

Here, j is the number of electrons that occupy the surface
state (the index runs from 0 to 1 in the present case), � is
the chemical potential, and Ejm is the energy of the mth
quantum state with j electrons. The subscripts j and m
in Eq. (45) are the same as the j and m in Table II. In
terms of j , m, and Ejm, the neutral-weak and charged-
strong chemisorption states for the donor-type adsorption
of H2 on Ga2O3 are shown in Table II.
Plugging the values in Table II into Eq. (45) yields,

Zchem = 2 exp
(
�−E0

a

kT

)
+ exp

(
−E+

ion

kT

)
(46)

The first (second) term in Eq. (46) corresponds to the
neutral-weak (charged-strong) chemisorbed state. The neu-
tral state contains one electron, which can be spin-up
or spin-down, hence the degeneracy 2. The probability
of occupying the neutral-weak chemisorbed state (f 0) is
given by,

f 0 = 2 exp��−E0
a /kT �

Zchem

= 1

�1/2� exp�E0
a −E+

ion−�/kT �+1
(47)

Since there are only two states, the remaining prob-
ability occupies the charged-strong chemisorbed state
(f + = 1− f 0). In the presence of an electric potential (�),

Table II. Classification of the two-level spectrum of surface states
according to the Volkenstein theory.

State j m Ejm

Neutral-weak 1 Spin up, spin down E0
a

Charged-strong 0 0 E+
ion

the energy of the charged-strong chemisorbed state
increases by e� because the state is positively charged. In
contrast, the energy difference between the neutral-weak
and charged-strong chemisorbed states decreases by e�
because the higher-energy neutral state is unaffected by �.
To obtain the expectation value of the charge density

in the depletion layer required by Eq. (43), one integrates
the product of electron density and Boltzmann probability
over distance along the surface normal,

�n�z�p�	 = 1
D

∫ D

0
n0 exp

(
−V �z�p�

kT

)
dz (48)

Here V �z�p� is the potential energy at the surface.
Geistlinger42 uses the film thickness as D. n0 is the charge
density evaluated at the zero position.
To obtain the gas pressure dependence of the potential

V �z�p�, one must solve the 1-D Poisson equation (see
Eq. (3)). In this case, the space charge density at the sur-
face, ��z�, is,

��z� = Qsc�Ef� p���z�=
end

1+2 exp�Ef−Ed/kT �

+ en�z�− ep�z� (49)

where Qsc�Ef� p� is the surface charge density due to
chemisorption, ��z� is the Dirac delta function, nd is the
concentration of bulk donors, Ef is the Fermi level, Ed is
the bulk donor level, n�z� is the electron concentration,
and p�z� is the hole concentration (the last of which is
neglected in Geistlinger’s approach, as justified in a pre-
vious section above). The areal surface charge density has
the following functional form,

Qsc�Ef� p�=
e�+�Ef� p�Nchem

A
(50)

where A is the area, Nchem is the total number of
chemisorption sites and �+ is the fractional coverage of
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charged-strong chemisorbed species. �+ is the product
of f + and the Volkenstein isotherm,11 �(Ef� p).

To summarize Geistlinger’s approach, he assumes the
presence of two chemisorption states in the spectrum of
eigenstates of the time independent Schrödinger equa-
tion for the surface+ adsorbate system: a neutral-weak
state and charged-strong state. The occupation probabili-
ties of the two states (f 0, f +) are obtained with Eq. (47).
The product of the occupation probability of the charged-
strong chemisorption state and the Volkenstein isotherm
gives the fractional coverage of charged-strong chemisorp-
tion (�+), from which the areal surface charge density
due to chemisorption Qsc(Ef� p) may be obtained using
Eq. (50). This surface charge density determines the space
charge density in the depletion region via Eq. (49).

Using the restrictions of global charge neutrality and
Gauss’s law, Geistlinger solves the 1-D Poisson equa-
tion self-consistently for V �z�p�. Inserting V �z�p� into
Eq. (48) produces the gas-pressure dependence of expec-
tation value of the charge density in the depletion layer.
This quantity together with Eq. (43) yields conductance.
A power law is obtained. The exponents n in this derived
power law values obtained using Geistlinger’s approach
(see Table I) agree well with the those determined exper-
imentally by Fleisher and Meixner,1 Windischmann and
Mark,13 and McAleer et al.4�5 establishing a firm theo-
retical basis for the power law behavior of thin film gas
sensors.

4. MISCELLANEOUS MODELS FOR G�T �p�
Three types of models used in the literature are not strictly
characterized as Arrhenius-type or power laws:
(1) Hopping conduction models,
(2) Mixed Arrhenius+power-law models, and
(3) Mixed kinetic+ semiconductor-physics models.

4.1. Mott’s Hopping Models
Mott developed two models of the thermal dependence
of conductance based on electron hopping in disordered
systems. Both models can be understood by reference to
the Miller-Abrahams expression,43

G�T �≡ Cv exp�−2	R� exp
(
−Ehop

kT

)
(51)

where Cv and 	 are constants, R is the distance between
localized states, 	 is the spatial extent of the wavefunc-
tion, and Ehop is the energy difference between localized
states. Equation (51) has three factors: a constant Cv and
two probability factors. The constant Cv can be thought
of as the product of an “attempt to escape” frequency
and a unit conversion factor that relates the hopping fre-
quency to conductivity. The first exponential effectively
describes the degree to which the wavefunctions of the
adjacent hopping sites overlap. The second exponential is

a Boltzmann hopping probability. This model was success-
fully applied by Sayer and Mansingh to semiconducting
phosphate glasses44 compounds of interest for use in opti-
cal fibers and bone scaffolds. Their studies showed that
Ehop, and thus the conductivity of these materials, corre-
spond to polaron formation and transport.
Mott’s first model, nearest neighbor hopping conduction

(NNH), describes systems with non-degenerate localized
states near the Fermi energy whose wavefunctions over-
lap appreciably. In the NNH model, the hopping distance
is short so the wavefunctions overlap appreciably. The
second exponential term in Eq. (51), which arises from
thermal activation, becomes the controlling factor and the
expression for conductance reduces to the form,45

�NNH = Cnn exp
(
−Ehop

kT

)
(52)

Mott’s second model, variable range hopping conduction
(VRH), describes systems at temperatures lower than the
applicable range of NNH. With decreasing temperature,
less thermal energy is available to promote endothermic
electron hops. For a given energetic and spatial distribu-
tion of potential hopping sites, with decreasing tempera-
ture the density of energetically accessible sites within the
neighboring volume of space decreases and longer hops
become more probable. Said another way, the electron
must look further afield to find an energetically accessible
site to which to hop. To arrive at an analytic expression
to describe this condition, one may start with Eq. (52) and
assume that the electron hops a distance greater than R
by some multiplicative factor p necessarily greater than
unity.46 The hopping distance becomes pR. A larger hop
samples a greater volume of space �4/3���pR�3 or con-
versely we may say that the energy difference between
hopping sites scales by 1/p3 from the case where the sam-
pling volume is �4/3��R3. The hopping probability may
then be taken to be proportional to,

exp
(
−2	pR− Ehop

kTp3

)
(53)

The most probable hopping distance can now be seen as
arising from a competition between the drive to mini-
mize the distance multiplier p (thereby maximizing the
first exponential factor) and the drive to maximize the
energy difference divisor p3 (thereby maximizing the sec-
ond exponential factor). To find this optimum distance, one
takes the second derivative of Eq. (53) with respect to p,
sets the resultant expression to zero, and solves for p. It
follows that the optimum is

p =
(

3Ehop

2	kTR

)1/4

(54)

Substitution of the optimal value of p into Eq. (53) yields
(after combining terms),

exp
(
−��	R�3/4

(
Ehop

kT

)1/4)
(55)
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where � is a collection of constants. This result demon-
strates the origin of the T −1/4 behavior of conductance in
the VRH model. The factor of 1/4 in the exponent may be
interpreted as arising because the hopping electron sam-
ples states embedded in a 4-dimensional space, 3 spatial
dimensions and energy. This may be seen more clearly by
defining a range parameter R̄ between two states in this
4D space by variable substitution into the argument of the
exponential in Eq. (53),

−R̄=−2	pR− Ehop

kTp2
(56)

so the hopping probability scales with exp�−R̄�. In practi-
cal application, the functional form for G�T � for the VRH
model is usually written in terms of T0, the characteris-
tic/Debye temperature,

G�T �∝ �VRH = Cvr exp
[
−
(
T0
T

)1/4]
(57)

where Cvr is an overall scaling-constant/conversion-factor.
Mott’s NNH and VRH models fit the experimental data

for phosphate glasses44�47 and semiconductive polymers48

extremely well. This last finding is potentially useful for
modelingG�T �p� for organic electronics, which have seen
a surge of interest in the last decade. Khanna and Nahar
applied the VRH model to Al2O3 humidity sensors at low
temperatures and obtained an excellent fit to the experi-
mental data.49 From this success they concluded that water
adsorption can create surface states that lie near the Fermi
energy and participate in VRH. More recent work by Cai
and colleagues provides an explanation relevant to higher
temperatures.29�30 Since VRH effectively describes disor-
dered systems,50 it has been applied to doped polyaniline51

and polyacetylene.48 For the case of polyaniline doped
with sulfonic acid, the power in the exponential was found
to be 1/2 as opposed to 1/4, yielding T0 values similar
to those found in the literature [52]. This change in the
exponent from 1/4 to 1/2 suggests that the hopping elec-
tron is sampling predominantly one spatial dimension. In
their investigation of iodine and AsF5-doped polyacety-
lene, Park et al. expanded the VRH model to include the
effects of potential barriers at inter-fibril boundaries.48 The
ability of the extended-VRH model to describe the thermal
dependence of conductance for AsF5-doped polyacetylene
may translate to other organic polymers and, therefore,
may find use in the field of polymeric organic electronics,
as G�T � surely play a role in their functionality.

4.2. Mixed Arrhenius+Power-Law Model
Kinetic models can also be used to describe G�T �p�
for specific adsorbate-adsorbent systems. Wlodek et al.
derived an expression for the thermal, temporal, and par-
tial pressure-dependence of conductance using the adsorp-
tion kinetics of a reducing gas at the surface of tin oxide

and solving the differential rate equation.53 Both Arrhe-
nius and power law-type function are found in their model
for G�T � t� p�. Wlodek’s model very nicely fits the exper-
imental data for the adsorption of the reducing gases CO,
H2, and C3H8.

53 In his exhaustive review of semiconduct-
ing thin-film gas sensors, Sberveglieri points out that the
Arrhenius equation and power law model for oxygen can
be combined to yield,

G�T �P�∝ � = C exp
(
− Ea

kT

)
P

1/m
O2

(58)

where C is a scaling-constant/conversion-factor.6 The acti-
vation energy (Ea) represents the thermal energy necessary
to excite an electron to the conduction band. Sberveglieri6

presents the values of the activation energy and m for a
total of 13 different semiconducting gas sensors spanning
17 references.

4.3. Two Mixed Kinetic+Power-Law Models
Point defect formation is an important factor in the con-
ductance of semiconductor gas sensors. Fergus showed
that a conductance model that incorporates the pO2

-
dependence of point defect formation in SrTiO3, CaTiO3,
and BaTiO3 can be constructed by combining the kinetics
of defect formation and gas adsorption.12 By considering
the nature and identity of defects, one can determine the
power to which the partial pressure of oxygen is raised in
G�pO2

�. The general procedure, (which is similar o the YS
approach)35 is as follows:
(i) Define the pertinent point defects,
(ii) Determine the equilibrium constants for their forma-
tion, and
(iii) Connect the equilibrium constant to the concentration
of electrons or holes.

Fergus showed this procedure reproduces the experiment
power law behavior for O2 adsorption on SrTiO3, CaTiO3,
and BaTiO3 gas sensors12 and we follow that derivation
closely here.
SrTiO3 forms both oxygen and strontium vacancies. At

low oxygen partial pressure, oxygen vacancies are the pre-
dominant defects. The chemical equation for the formation
of an oxygen vacancy (VO) in SrTiO3 is,

VO� s � 1/2O2+2e−+V0 (59)

VO� s is a potential oxygen vacancy site. The equilibrium
constant for oxygen vacancy formation (KO) is,

KO = p
1/2
O2

n2V0�

VO� s�
(60)

where n is the concentration of electrons. Following stan-
dard thermodynamic practice, one may set VO� s� = 1.
Assuming oxygen vacancies (which are more likely to
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form at low oxygen partial pressure) are the principal
source of electrons, the concentration of electrons is

n≈ 2V0� (61)

Combining Eqs. (60) and (61) and solving for n yields its
pO2

-dependence:

n=
(

2K0√
pO2

)1/3

∝ p
−1/6
O2

(62)

This procedure (Eqs. (60) through (62)) can analogously
be carried out at high oxygen partial pressure, where stron-
tium vacancies are more likely. Strontium vacancies form
hole charge carriers, whose concentration p also depends
explicitly on pO2

:

p = �2KSr�
1/3p

1/6
O2

∝ p
1/6
O2

(63)

Ksr is the equilibrium constant for the formation of a stron-
tium vacancy.

A model for aqueous proton conduction at a solid-Al2O3

surface by Khanna and Nahar is also grounded in kinet-
ics, but contains a fractional power of concentration in the
exponent as well.49 In this model the dependence of the
conductance on the concentration of HSO−

4 is given by
the function,

G∝ � = e�Hall

[
exp

(−�F 0

RT
−2P

√
�

)
CHSO−

4

]1/2

(64)

where e is the elementary charge, �Hall is the Hall mobility,
�F 0 is the standard free energy change for the dissociation
of H2SO4, T is the absolute temperature, � is the ionic
strength, CHSO4− is the concentration of HSO−

4 , and P is
the permittivity constant, which is defined as,

P =
(

e3

�wkBT

)3/2√
2�NA/1000 (65)

where �w is the dielectric constant of water, kB is Boltz-
mann’s constant, and NA is Avogadro’s number. Their
model predicts that electronic conduction dominates at low
temperature and protonic conduction at high temperature,49

which is opposite to the case where no aqueous layer is
present.

4.4. Mixed Kinetic+Semiconductor-Physics Model
In an attempt to describe the effect of water vapor on
the conductance of tin dioxide, Gaman et al. developed
a model that includes the contributions of both band
bending/Schottky barriers at grain boundaries and adsorp-
tion kinetics.2 The authors started with an Arrhenius-
type relationship between conductance and temperature
where the activation energy physically corresponds to the
Schottky barrier due to band bending at SnO2 grain bound-
aries. Then, in a similar fashion to the work of Wlodek

et al.53 they developed the following kinetic model for
G�pH2O

� pH2
�. The functional form is,

G= exp
[
e�s�pH2O

�

kT

�pn

1+�nH2

(
2− �nH2

1+�nH2

)]
(66)

where e�s is the Schottky barrier (which depends on the
humidity), � is a simplifying constant, and nH2 is the con-
centration of H2.

2

5. CONCLUSIONS
The dependence of the conductance on temperature and
the partial pressure of adsorbing gasses is of central
importance in several fields, most notably gas sensing
and catalysts. This paper reviews the physical origins of
various mathematical models that are in common usage,
describing in detail the connection between their math-
ematical form and fundamental physical and chemical
principles.
There are two popular simple models for describing

G�T �p�: the Arrhenius Equation for G�T � and the Power
Law Model for G�p�.
Models based on the Arrhenius equation are most often

used to describe the thermal dependence of conductance.
The Arrhenius expression has its origins in microscopic
kinetic theory and is generally applicable when there is a
key energy barrier to the transport of charge. The barrier
can often be identified as a Schottky barrier at a surface or
inter-grain interface, but may also arise from the valance-
band/conduction-band gap in a semiconductor. When the
charge carrier is an atomic or molecular ion, a model with
Arrhenius-like terms may arise as well. In such a case,
the energy barrier will correspond to a physical hopping
barrier to movement of the charged species.
Power-law models are most often used to describe con-

ductance as a function of adsorbate gas partial pressure.
They generally have their origins in classical reaction
kinetics. The rate equations for these processes are writ-
ten as functions of the concentrations of the reactant and
product species raised to powers of their stoichiometric
coefficients, leading to the appearance of power terms in
the derived conductance model. More elegantly, the same
laws can be derived by reference to the partition function
for physisorbed and chemisorbed states that appear in the
solution of the Schrödinger equation for the system of an
adsorbate interacting with a surface.
In many cases, simple Arrhenius or power-law models

are sufficient to reliably describe G�T �p� over the range
of temperatures and pressure of interest. Mixed conduc-
tance models that incorporate both kinetics and semicon-
ductor physics have also been successfully applied. Mott’s
conductance models are based on charge-particle hopping
theory. Representative applications are to phosphate gasses
and conducting polymers.
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APPENDIX A
To derive a relationship between the areal density of
physisorbed oxygen and temperature and gas partial pres-
sure, roughly following Clifford,15 we start by considering
the adsorption reaction:

O2�g�+V � O2�ad� (A1)

where (O2�g�) denotes gas phase molecular oxygen,
(V ) denotes a vacant surface physiosorption site and
(O2�ad�) denotes physiosorbed molecular oxygen. Assum-
ing that adsorption and desorption are elementary pro-
cesses we may write the rate (rf� for the adsorption
process as,

rf = kfpO2
S�E�−np�E�−nt�E�� (A2)

Here kf is the rate constant for the adsorption process,
pO2

is the partial pressure of oxygen gas, S�E� is the den-
sity (in energy) of physiosorption sites, nt is the density
(in energy) of ionosorbed oxygen, and np is the density
(in energy) of physiosorbed oxygen. Note that the den-
sity of surface vacancies (the quantity in square braces
in Eq. (A2)) is given by the total density of physisorp-
tion sites minus the density of sites tied up in ionosorp-
tion minus the density of sites tied up in physisorption.
Similarly, the rate (rr ) for the desorption process may be
written as

rr = krnp�E� = v0 exp−�Eg −E�/kT �np�E� (A3)

Here (kr ) is the rate constant for the desorption process.
As shown in the RHS of Eq. (A3), this rate constant may
we written as an attack frequency (
0) times a Boltzmann
probability that the system has sufficient energy to reach
the desorbed state. The gas-phase potential of the physisor-
bate is denoted Eg , a value which effectively sets the zero
of potential.
Since equilibrium between adsorption and desorption is

achieved very rapidly, Eq. (A2) may be equated to (A3)
and rearranged to yield an expression for the density (in
energy) of physisorbed oxygen (np�E�),

kfPO2
S�E�−kfPO2

np�E�−kfPO2
nt�E�

= v0 exp−�Eg −E�/kT �np�E� (A4)

It follows that the density (in energy) of physisorbed oxy-
gen is given by,

np�E� =
S�E�−nt�E�

1+ �aPO2
�−1 exp−�Eg −E�/kT �

(A5)

where (kf/
0 ≡ a). Using standard thermodynamics, the
chemical potential of the surface physisorbed molecular
oxygen (�s) is,

�s = Eg +kT ln�aPO2
� (A6)

Substituting for Eg in Eq. (A5) yields,

np�E� =
S�E�−nt�E�

1+ exp�E−�s�/kT �
(A7)

To find the areal density of physisorbed molecular oxygen
one integrates over energy.

Np =
∫ Eg

−�
np�E�dE (A8)

Note that Lantto3 refers to this quantity as Ns. Here we are
loosely following Clifford15 and therefore denote it Np.
To proceed from here, two assumptions are made. First,

the Weisz limitation28 restricts the magnitude of the sur-
face charge to a small near constant, nt(E), which is
assumed negligible. Second, the distribution in energy of
physiosorption sites is assumed to be exponential,

S�E�= N0

E0

exp−�Eg −E�/E0� (A9)

where (E0) is a parameter having units of energy, which
is characteristic of the surface and sets the state density.
A typical value of E0 is 0.2 eV.3 With these two assump-
tions, the areal density of physisorbed molecular oxygen
may be approximated by

Np =
N0

E0

∫ Eg

−�

exp−�Eg −E�/E0�

1+ exp�E−�s�/kT �
dE (A10)

Note the upper limit of integration is the gas-phase poten-
tial of the physisorbate. Physisorbed states higher than this
in energy are not relevant since they are not energetically
accessible. The lower limit of integration is sometimes set
to zero for convenience, but doing so is only valid for
Eg � �s � 0; a condition that can typically be met with a
judicious choice of the zero of potential. A graph depict-
ing the integrand of Eq. (A10) is shown in Figure A1 for
typical values (in eV): Eg = 2, �s =Eg−0�5, E0 = 0�2 and
kT = 0�05.
Note that E0 sets the rate of growth of the exponential

distribution and �s sets the point where the distribution

Fig. A1. Integrand of Eq. (A10) as a function of E. Note the dependent
variable is essentially zero for values E ≤ 0.
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gets shut off with increasing energy. kT determines the rate
at which the function is shut off around �s. At higher tem-
peratures, the distribution gets shut off more slowly with
increasing energy. Under these conditions the function is
effectively zero for E < 0, therefore this is a case where
the lower limit of integration could be set to zero for con-
venience. The integrand essentially simplifies to zero for
E > Eg , so the upper limit of integration may reasonably
be set anywhere from Eg to +�.

The integral in Eq. (A10) can be approximated through
application of the Sommerfeld expansion. To apply this
technique, the integral is written as

Np =
N0

E0

∫ �

−�
H�E�

1+ exp��E−���
dE (A11)

The substitutions,

H�E� = exp�E−Eg�/E0� (A12)

as well as �= �kT �−1 and �=�s bring Eq. (A10) into the
form of (A11). According to the Sommerfeld expansion,
the solution may be approximated by

Np ≈
N0

E0

{∫ �

−�
H�E�dE+ �2

6

(
1
�

)2

H ′���+O
(

1
��

)4}

(A13)
Here H ′��� = dH�E�/dE�E=� , and O�1/���4 denotes
terms of order �1/���4. The latter are neglected here.
It follows that

Np ≈ N0

E0

{
exp�−Eg/E0�

∫ �

−�
exp�E/E0�dE

+ �2

6

(
1
�

)2
dH�E�

dE

∣∣∣∣
E=�

}
(A14)

Evaluating the integral yields

Np ≈ N0

E0

{
exp�−Eg/E0�E0exp��/E0�− exp�−�/E0��

+ �2

6

(
1

�

)2
dH�E�

dE

∣∣∣∣
E=�

}
(A15)

Evaluating the derivative yields

Np ≈ N0

E0

{
exp�−Eg/E0�E0 exp��/E0�+

�2

6

(
1
�

)2

×
(

1

E0

)
exp�−Eg/E0� exp��/E0�

}
(A16)

Since Eg � E0, the second term within the braces effec-
tively evaluates to zero and the expression reduces to

Np ≈
N0

E0

�exp�−Eg/E0�E0 exp��/E0�� (A17)

which simplifies to

Np ≈ N0

{
exp

[
�−Eg

E0

]}
(A18)

Using the thermodynamic relation between Eg and �s

given in (A6) together with the identity expxin�y� = yx

yields
Np ≈ N0�aPO2

�kT /E0 (A19)

Equation (A19) gives the pressure and temperature depen-
dence of the areal density of physisorbed molecular oxy-
gen under the assumption of a distribution of physisorption
sites that is exponentially distributed in energy.

APPENDIX B: NOTATION
The following is a glossary of notation used herein, in
order of appearance.

G�T �p� Conductance, often expressed as a function
of temperature and/or pressure.

T Kelvin temperature.
p Partial pressure, herein typically of an adsor-

bate gas. Alternatively used to denote number
of moles or as a simple multiplicative factor.
The meaning should be clear from the con-
text.

prg Partial pressure of a reducing gas.
G0 Conductance at infinite temperature. (a theo-

retical value only, infinite temperature would
vaporize all materials.)

Ea Activation energy.
k Boltzmann constant.

V �x� Potential energy, here a function of some spa-
tial coordinate (x).

� Permittivity relative to free space.
�0 Vacuum permittivity.

��x� Charge density, here a function of some spa-
tial coordinate.

q Unit charge. Alternatively used to denote
number of moles. The meaning should be
clear from the context.

Nd Volume density of donors.
w Depletion depth.

Qsc Surface charge density.
Vs = EB Surface potential barrier.

e Elementary charge.
Et Energy of state to which ionosorbate adsorbs.
Np Surface density of physisorbed oxygen.
pO2

Partial pressure of molecular oxygen gas.
e� Fermi energy.
�E Energy difference between the surface states

(Et) and the top of the Schottky barrier.
N0 Parameter characteristic of physisorbed state

density at energy of gas phase adsorbate.
a≡ kf

v0
Constant defined as the ratio of forward rate
constant (kf) to attack frequency (v0).

E0 Parameter having units of energy that sets the
physisorbed state density.

vi Drift velocity of species indicated by
subscript.
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ni Concentration of species indicated by
subscript.

B Scaling/units-conversion constant.
v0 Attach frequency. (may have second subscript

to denote specific species.)
di Hopping distance for species denoted by

subscript.
��T � Hopping probability, written as a function of

temperature.
Ebi Hopping barrier energy for species denoted

by second subscript.
E Energy or electric field. Meaning should be

clear from context.
Ni Concentration of binding sites.

��T �P� Fractional occupancy of surface sites, often
written as a function of temperature and
adsorbate partial pressure.

ni Surface concentration of adsorbate.
Ki Equilibrium constant for desorption reaction

of species denoted by subscript.
�Fi Free energy of desorption for species denoted

by subscript.
R Gas law constant.
LD Debye length.
e� Surface electron concentration.

m≡ w/LD Reduced depletion depth.
R Resistance.
R0 Resistance of bulk material.

kf and kr Forward and reverse rate constants.
��p� Conductivity, written here as function of par-

tial pressure.
�SCR Surface charge mobility.

n�z�p� Charge density, expressed as a function of
normal distance and partial pressure.

Ĥ Hamiltonian operator.
h= h

2� Planck constant.
Vlattice�
r� Periodic potential arising from a lattice of

ions. (
r is the spatial coordinate vector.)
W�
r− 
d� Coulomb potential arising from an adatom at

position 
d.
U� 
d� Electrostatic adatom-lattice interaction.
Zchem Partition function.
Ejm Energy of state m with j electrons.

f + and f 0 Fractional occupancies of charged and neutral
states.

� Electric potential.
n0 Charge density evaluated at the zero of poten-

tial.
��z� Space charge density as a function of the sur-

face normal.
n�z� Electron concentration as a function of the

surface normal.
p�z� Hole concentration as a function of the sur-

face normal. Concentration as a function of
the surface normal.

��z� Dirac delta function.
Nchem Total number of chemisorption sites.

Cv Units-conversion constant and attempt fre-
quency in Miller-Abrahams expression.

	 Is the spatial extent of the wavefunction in
the Miller-Abrahams expression.

R Distance between localized states in the
Miller-Abrahams expression.

Ehop Is the energy difference between localized
states.

�NNH Conductance in the nearest neighbor hopping
model.

Cnn Scaling/units-conversion constant in the
nearest-neighbor hopping model.

�VRH Conductance in the variable-range hopping
model.

Cvr Scaling/units-conversion constant in the
variable-range hopping model.

R̄ Range parameter in variable-range hopping
model.

T0 Debye temperature.
K0 Equilibrium constant for oxygen vacancy

formation.
V0� Concentration of oxygen vacancies.
KSr Equilibrium constant for Sr vacancy

formation.
�Hall Hall mobility.
�F 0 Standard free energy change for the dissoci-

ation of H2SO4.
� Ionic strength.

S�E� Density (in energy) of physisorption sites.
nt Density (in energy) of ionosorbed oxygen.
np Density (in energy) of physiosorbed oxygen.
Eg Gas-phase potential of the physiosorbate,

effectively sets the zero of potential.
�s Chemical potential of surface adsorbate.

�= 1
kT

Reduced Boltzmann constant.
H ′��� Substitution in Sommerfeld expansion.
O�x�4 Terms of order 4th power in x.
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