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ABSTRACT: The activity of Ni2P catalysts for the hydrogen evolution reaction
(HER) is currently limited by strong H adsorption at the Ni3-hollow site. We
investigate the effect of surface nonmetal doping on the HER activity of the Ni3P2
termination of Ni2P(0001), which is stable at modest electrochemical conditions.
Using density functional theory (DFT) calculations, we find that both 2p nonmetals
and heavier chalcogens provide nearly thermoneutral H adsorption at moderate
surface doping concentrations. We also find, however, that only chalcogen
substitution for surface P is exergonic. For intermediate surface concentrations of
S, the free energy of H adsorption at the Ni3-hollow site is −0.11 eV, which is
significantly more thermoneutral than the undoped surface (−0.45 eV). We use the
regularized random forest machine learning algorithm to discover the relative
importance of structure and charge descriptors, extracted from the DFT calculations, in determining the HER activity of
Ni2P(0001) under different doping concentrations. We discover that the Ni−Ni bond length is the most important descriptor of
HER activity, which suggests that the nonmetal dopants induce a chemical pressure-like effect on the Ni3-hollow site, changing its
reactivity through compression and expansion.

■ INTRODUCTION

The discovery of highly active, noble-metal-free catalysts for the
hydrogen evolution reaction (HER) is crucial for the
development of economical water-splitting fuel storage
technologies. There have been many candidates proposed in
the past two decades, most notably MoS2

1,2 and Ni2P.
3,4

Recently, we found that the bulk-like Ni3P2 termination of the
Ni2P(0001) surface, which is stable at modest electrochemical
conditions, i.e., reducing potentials greater than −0.21 V vs the
standard hydrogen electrode (SHE) and pH = 0, is not
catalytically active because the Ni3-hollow site binds H too
strongly (ΔGH = −0.45 eV).5 Upon the application of −0.21 V
vs SHE, however, the surface becomes enriched with P
adatoms, which provide nearly thermoneutral H adsorption
and consequently catalytic activity toward the HER.5

In order to overcome the inactivity of the Ni3-hollow site,
attempts have been made to tune the HER activity of Ni2P by
doping with different transition metals such as Co,6−8 Fe,9

Mn,10 and Mo.11 There have been no attempts, however, to
dope Ni2P with nonmetals, despite the host of stable binary Ni-
nonmetal compounds that exist in nature and are catalytically
active toward water splitting such as Ni3N,

12 Ni3Se2,
13 and

Ni3C.
14 Furthermore, there have been no studies, experimental

or theoretical, that investigate the effect of surface doping on
the HER activity of Ni2P, as most studies have considered bulk
doping. Here, we study the influence of surface nonmetal
doping on the surface structure, charge states, and HER activity

of Ni2P(0001) using density functional theory (DFT)
calculations. We find that the Ni−Ni bond length is a robust
descriptor for the HER activity of Ni2P(0001) using machine
learning based on regularized random forests.15 This paper
outlines a transferable approach for the use of machine learning
to extract descriptors from DFT structural and charge data.

■ METHODS
First-Principles Calculations. Spin-polarized DFT calculations

were performed using the Quantum Espresso code (version 5.1).16

Optimized, norm-conserving, designed nonlocal pseudopotentials
were used to replace the nuclear Coulomb potential plus core
electrons with a smoother, effective potential.17,18 The valence electron
wave functions were expanded in a plane-wave basis with an energy
cutoff of 50 Ry. The generalized gradient approximation (GGA) of
Perdew, Burke, and Ernzerhof (PBE)19 was used to calculate the
exchange-correlation energy. Grimme’s semiempirical DFT-D2
method20,21 was used to include dispersion interactions, which are
generally important for accurately modeling catalytic processes.22,23

We choose the DFT-D2 method because it shows excellent agreement
with higher-level electron correlation methods, i.e., Møller−Plesset
perturbation theory (MP2) and coupled-cluster singles and doubles
(CCSD), for H adsorption energies.24,25

We modeled the HER on an eight-layer, periodic slab of Ni2P. The
dimensions of the slab were a = b = 10.07 Å and c = 39.57 Å, and α =
β = 90° and γ = 120.08°. The width of the vacuum region was 26.24 Å.
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A × °R( 3 3 ) 30 surface supercell was used so that we could model
fractional surface concentrations of nonmetal dopants. A Γ-centered, 3
× 3 × 1 grid of k-points was used to sample the Brillouin zone. During
geometry relaxations, the bottom four layers of the slab were fixed in
their bulk configurations.
Machine Learning. Regularized random forests (RRFs) were

trained using the caret package (version 6.0.77) for R (version 3.2.5).26

Processed data and R scripts for the machine learning can be found in
the Supporting Information. 3-fold cross-validation (CV) was
performed to improve our prediction of the “out-of-sample” error.
At each step of the training process, 10 descriptors were randomly
selected and a regularization value of 0.1 and an importance coefficient
of 0.75 were applied. More details on the DFT calculations and
machine learning can be found in the Supporting Information.

■ RESULTS AND DISCUSSION

Surface Structure and Doping Scheme. Bulk Ni2P(s)
has two alternating layers along the [0001] axis with
compositions of Ni3P and Ni3P2. Figure 1A shows the structure
of the Ni3P2(0001) termination. The surface has one Ni3-
hollow site per unit cell (three per × °R3 3 30 supercell).
In an aqueous electrochemical environment at U = 0 V vs SHE
and pH = 0, each Ni3-hollow site binds H strongly (ΔGH =
−0.45 eV, nX = 0 in Figure 1B). Each Ni bonds with two P in
the surface layer and one P in the subsurface layer. This makes
for a total of six symmetry-equivalent P atoms surrounding the
Ni3-hollow site in the surface layer, which are numbered from 1
through 6 in Figure 1A. We replace these surface P sites with
nine different nonmetals (As, B, C, N, O, S, Se, Si, and Te) and

varied the number of dopants (nX) from 1 to 6. We found that
the S dopants prefer being separated at nS = 2, i.e., S at
positions 1 and 2 is more favorable than when they are sharing
a common Ni (at positions 1 and 5) by 0.34 eV. Thus, for other
dopants, and at higher doping concentrations, the maximum
separation between dopants is maintained. The indices on P in
Figure 1A correspond to the preferred sequence of substitution
of the P atoms. For example, at nX = 3, dopants are substituted
at sites 1, 2, and 3. While the Ni and P sites are symmetrically
equivalent initially, doping breaks this symmetry.

Effect of Doping Concentration on H Adsorption and
Dopant Substitution. H Adsorption. The effect of surface
dopant identity and concentration on ΔGH at the Ni3-hollow
site is shown in Figure 1B. We observe three distinct trends
corresponding to (1) As and Si, (2) 2p nonmetals (B, C, N, and
O), and (3) chalcogenides (S, Se, and Te). The first set does
not differ appreciably from the undoped surface (dashed, light
blue line marked “undoped”). ΔGH is relatively constant with
respect to changes in the surface dopant concentration.
Conversely, 2p nonmetals (set 2) have a dramatic effect on
ΔGH, which generally increases with increasing nX. Nearly
thermoneutral H adsorption is possible for nX = 2−3 (50%
substitution) and, above that, H adsorption is no longer
favored. The chalcogenides (set 3), on the other hand, have an
intermediate effect on ΔGH. From nX = 1 to 3, ΔGH increases at
about the same rate for each chalcogenide. From nX = 4 to 6,
however, ΔGH decreases, with the attenuation being more
pronounced for S and Se than Te. The maximum ΔGH
achieved is −0.11 eV for S at nX = 3. Therefore, doping the

Figure 1. (A) Structure of Ni3P2(0001) surface of Ni2P showing the × °R( 3 3 ) 30 supercell. The Ni3-hollow sites, which bind H, are shown.
The indices on P atoms indicate the preferred sequence of substitution with dopants. Free energy of (B) H adsorption and (C) dopant substitution
as a function of the surface dopant concentration. ΔGH = 0 is referred to as “thermoneutral” H adsorption. ΔGH for the undoped surface is labeled
and denoted by a dashed, light blue line. The spontaneity of dopant substitution is labeled and indicated by a dotted black line.

Figure 2. Effect of dopant and surface concentration on the (A) average Ni residual charge (⟨qNi⟩) and (B) average Ni−Ni bond length (⟨Ni−Ni⟩).

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.8b00947
J. Am. Chem. Soc. 2018, 140, 4678−4683

4679

http://dx.doi.org/10.1021/jacs.8b00947


Ni3P2(0001) surface of Ni2P with 2p nonmetals (B, C, and O)
or chalcogens at ≈50% (nX ≈ 3) can substantially improve the
HER activity of the Ni3-hollow site.
Dopant Substitution. Next, we evaluate the stability of

different doping configurations. To do this, we calculate the
free energy of substitution (ΔGsub) relative to the computa-
tionally favorable phases under reducing conditions U = 0 V vs
SHE and pH = 0 of P and each dopant (H3PO4, As, SiO2,
H3BO3, CH4, NH4

+, H2O, H2S, H2Se, and Te)
27 for nX = 1 to 6.

Details and an example calculation of ΔGsub for can be found in
the Supporting Information (see Tables S1 and S2). Figure 1C
shows that ΔGsub does not depend strongly on nX; however, a
slight increase is observed for As, the chalcogens, C, N, and O.
Substitution is exergonic for only five of the nine nonmetals:
As, O, and the chalcogens. The others, period two nonmetals
and Si, are significantly endergonic. The only set of nonmetals
that both enhances the HER activity of the Ni3-hollow site and
stabilizes the surfaces is the chalcogens. O is an exception in set
2 as it substitutes spontaneously with P at nX = 2 and 3. This
has a negative effect on catalysis because at nX = 3, where O
substitution is most favorable, ΔGH = 0.22 eV, which is too
weak for facile hydrogen evolution. However, since ΔGsub for
the heavier chalcogens are much more favorable, substitution
with S, Se, and Te will be able to inhibit the introduction of O
in the surface. Such substitutions can thus suppress catalytically
degenerative oxygenation of the surface, highlighting another
advantage of nonmetal doping. As such, we propose surface
doping with S, Se, and Te as a very promising route for
improving the HER activity of Ni3P2(0001).
Exploratory Data Analysis. Charge Descriptors. In order

to better understand the trends in ΔGH and ΔGsub with respect
to nX, we first perform a rudimentary exploratory analysis of
charge descriptors. Figure 2A shows nearly linear trends
between the average Ni residual charge (⟨qNi⟩) and number
of dopants (nX). Their slopes can be interpreted as the
direction of electron transfer between Ni and the dopant. For
example, positive slopes correspond to electron transfer from
Ni to the dopant, thereby oxidizing Ni (the electron donor)
and reducing the nonmetal (the electron acceptor). The
opposite is true for negative slopes. ⟨qNi⟩ does not correlate
strongly with ΔGH. For example, S and Se have very similar
trends in ΔGH (see Figure 1B). However, S and Se cause
opposite shifts in ⟨qNi⟩. Additionally, there are no significant

changes in their ⟨qNi⟩ trends that coincide with the maximum in
ΔGH at nX = 3. Therefore, ⟨qNi⟩ is a poor descriptor of ΔGH.

Important Descriptors from Machine Learning. In order to
rationalize the trends in ΔGH, we search for other structural
and charge descriptors. For each DFT-relaxed structure, we
compile Ni−Ni bond lengths, Ni−Ni−Ni bond angles, Löwdin
charges, elemental data (mass number, atomic weight, and
atomic radius), summary statistics (mean and standard
deviation), and other geometric parameters (perimeter and
area of Ni3-hollow sites). Note that the descriptors we chose
involve only the H adsorption site, i.e., the Ni3-hollow site, and
the dopants. Descriptors involving surface P atoms are deemed
unnecessary because they do not directly participate in
bonding, and changes in the Ni−P bond lengths are in fact
already included in the contraction or expansion of the Ni3-
hollow sites. Removing such potentially redundant descriptors
keeps the data simple. Our data are obtained from surfaces
without H, because we want to be able to predict HER activity
based on intrinsic surface properties. In total, the data set has
55 observations (structures) and 30 variables (29 descriptors
and ΔGH). Machine learning is becoming increasingly popular
for semiautomated and quantitative discovery of data
correlations in chemistry and materials science.28−30 Using
these data, we trained an RRF, yielding a root-mean-squared
error (RMSE) of 0.09 eV in the predicted ΔGH. Figure 3A
shows that the data very closely straddle the perfect correlation
line. Note that we performed 3-fold CV instead of randomly
splitting the data into one training and one test set (see Figure
S1 in the Supporting Information). In general, k-fold CV splits
the data into k sets and averages the models generated by
training on k − 1 of the sets and testing on the other. This
method gives better estimates of the “out-of-sample” error,
which in our case refers to the RMSE in the prediction of ΔGH,
than randomly train/test splitting.
The architecture of RRFs allows for the calculation of feature

importances. These measure the relative importance of different
descriptors in describing the HER activity of nonmetal-doped
Ni2P(0001) surfaces. Importance is defined as the normalized
ability of a descriptor to separate the data based on ΔGH.
Figure 3B shows the top ten, most important descriptors from
the 29 included in our data set. The top two descriptors are a
particular Ni−Ni bond length (whose constituent atoms are
distinguished by their distance from the first doping site, see

Figure 3. (A) ΔGH predicted by RRFs vs DFT. Black-dashed line corresponds to perfect agreement. (B) Relative importance of descriptors
calculated from RRF model. Only the top 10 features are shown (see Figure S2 in the Supporting Information for full list). (C) Definition of
descriptors in (B). We label the three Ni atoms α, β, and γ based on their distance from the first doping site. (D) Effect of average Ni−Ni bond
length on ΔGH as induced by chemical pressure and mechanical pressure. Chemical pressure was induced by surface nonmetal doping and
mechanical pressure by fixing the positions of surface Ni atoms. Green dotted line adjusts for Ni−Ni bond contraction upon H adsorption in the
mechanical case. According to the mechanical pressure calculations, the ideal Ni−Ni bond length for HER is between 2.97 and 3.07 Å.
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Figure 3C) and the average Ni−Ni bond length (⟨Ni−Ni⟩). Of
the top ten descriptors, seven are related to the geometry of the
Ni3-hollow site. Other important features include the charges of
dopants at nX = 2 and 3 (qX2 and qX3), and the standard
deviation of the dopant charges (σqX). While in principle, it
would be straightforward to include more complex descriptors
like the electronic DOS and its moments (e.g., the d-band
center31,32 of Ni), this is shown to be unnecessary, however,
because the simple and intuitive Ni−Ni bond length proves to
be quite descriptive of HER activity. Further, the fact that the
atomic charges exhibit poor correlation indicates that such
metrics that depend on electronic partitioning will also likely be
unimportant.
Structural Descriptors. Having identified ⟨Ni−Ni⟩ as a good

descriptor for ΔGH, we more closely examine their correlation.
Figure 2B shows the effect of surface doping on ⟨Ni−Ni⟩ as a
function of nX. Like ΔGH, ⟨Ni−Ni⟩ is relatively unaffected by
doping with As and Si. The period two nonmetals, however,
induce a significant expansion in the ⟨Ni−Ni⟩. This correlates
quite strongly (Pearson’s r ≥ 0.41, r = −1 or 1 for perfect
negative and positive correlation, respectively) with ΔGH,
which also increases dramatically with increasing nX. The
chalcogens (set 3) show two regimes of change in ⟨Ni−Ni⟩,
much like their trends for ΔGH and ΔGsub. For set 3, at lower
surface doping concentrations (i.e., nX = 1 to 3), the ⟨Ni−Ni⟩
increases with the increase for S being largest and Te the
smallest. At higher surface doping concentrations (i.e., nX = 4 to
6), ⟨Ni−Ni⟩ plateaus. While there is an apparent moderate
dependence of ΔGH or ⟨Ni−Ni⟩ on nX seen in Figures 1B and
2B, it only became evident that Ni−Ni bond lengths are good
descriptors for HER activity through the training of the RRF
model. Since the influence of surface nonmetal doping on both
the geometry of the Ni3-hollow site and ΔGH are similar, this
implies a chemical pressure-like effect33 that can be summarized
as follows: nonmetal surface doping effectively acts like
mechanical pressure, expanding or compressing the Ni3-hollow
site.
This effect can be rationalized as follows: as the Ni3-hollow

site expands, the Ni−H bonds that form will have to stretch if
H is to remain at the center. Upon sufficient expansion,
however, H must reduce/sever its interaction with one or two
Ni atoms to form an optimal Ni−H bond length, thereby
weakening its adsorption strength (see Figure S3 in the
Supporting Information for an example of this). The HER can
be broken down into two steps, H adsorption and H2
desorption. The former is called the Volmer reaction, and its
rate is proportional to the strength of H adsorption. H2
desorption can follow either the Tafel or Heyrovsky
mechanism. The rates for both of these reactions are inversely
proportional to the strength of H adsorption. In order to
maximize the rate of the HER, a compromise, often called the
Sabatier principle,34 must be made between H adsorption and
H2 desorption. This compromise is struck at ΔGH = 0, which is
referred to as thermoneutral H adsorption. As a final comment,
the Brønsted−Evans−Polanyi (BEP) principle states that there
is a linear relationship between the kinetic barrier and the free
energy of a reaction. Therefore, by weakening H adsorption at
the Ni3-hollow site via dopant-induced tensile strain, the kinetic
barrier for HER is also decreased and its rate is increased.
Local charges play a minimal role because the surface is

metallic35 and therefore can easily provide the requisite free
charge to stabilize adsorption. The effect of doping on the
surface strain is nonlinear with the dopant atomic radius

because the induced strain is a complex function of the relative
electronegativity of the constituent atoms, valence, concen-
trations of the dopants, and coordination chemistry. Naturally,
dopants that form shorter Ni−X bonds will expand the Ni3-
hollow site, while those that form longer Ni−X bonds will
cause the Ni3-hollow site to contract. This explains the more
drastic effect of 2p nonmetals on the adsorption of H due to the
Ni3-hollow site’s expansion. However, the mechanical effect of
X on Ni−X bonding is also dependent on the dopant
concentration, hence the observed nonlinear dependence of
⟨Ni−Ni⟩ on nX (Figure 2B). These explain why the dopant
atomic radius appears to be a less important descriptor for
ΔGH.

Chemical Pressure Proof of Concept. In order to confirm
this machine learning insight, we apply mechanical pressure to
the Ni3-hollow site. The ⟨Ni−Ni⟩ was compressed and
expanded by fixing the internal coordinates of the surface Ni
atoms and allowing the other surface atoms to relax during
DFT geometry optimization. Note that the lattice constants
were fixed. Figure 3D shows that applied mechanical pressure
(orange points and dashed line) induces the same change in
ΔGH as does chemical pressure via nonmetal doping (blue
points). Therefore, it is not the electronic character of the
nonmetal dopants but rather the structural distortion they
induce on the surface that modulates the HER activity of the
Ni3P2(0001) surface. Note that our calculations indicate that
⟨Ni−Ni⟩ contracts by ≈0.1 Å upon H adsorption. This means
that since the internal coordinates of Ni are fixed even upon H
adsorption, unlike in the doping case, we are likely over-
estimating ΔGH, and thus the orange line represents an upper
limit for the mechanical pressure effect. If we manually adjust
⟨Ni−Ni⟩ by 0.1 Å (Figure 3D green dotted line), the
agreement between mechanical and chemical pressure
improves.

Perspectives. On the basis of the mechanical pressure
calculations, ⟨Ni−Ni⟩ ≈ 2.97−3.07 Å should produce
thermoneutral H adsorption and thus the optimal intrinsic
activity for an HER electrocatalyst expressing the Ni3 motif.
The optimal bond length should be used in high-throughput
searches to screen for bulk binary Ni-nonmetal compounds. An
alternative would be to study mixed nonmetal doping, e.g.,
doping with both S and Se. We anticipate that undoped and
doped transition metal phosphides with bulk crystal structures
similar to Ni2P(s), such as Fe2P(s), Co2P(s), (Fe,Co)P(s), and
(Ni,Co)P(s), will also exhibit chemical pressure-driven
enhancement of HER to varying degrees. Our study
demonstrates that a comprehensive investigation of surface
nonmetal doping for a variety of single and mixed transition
metal phosphides will reveal promising candidate materials with
nearly ideal intrinsic activity toward the HER.
In these kinds of doping studies, we should not lose sight of

the thermodynamics and kinetics of dopant incorporation and
segregation within the bulk, as this will provide valuable
information regarding the feasibility of synthesizing catalysts.
We have shown that certain dopants may stabilize the surface
with respect to dissolution, e.g., doping with chalcogens or As.
Our current data set for machine learning is specifically

obtained for the Ni2P surface that expresses the Ni3 motif, and
thus the method will work best in predicting perturbations
within the structural framework of Ni2P. A great example of
extending this model would be the examination of doping with
transition metals, as mentioned above, in cases where this only
causes minimal changes to the underlying atomic structure of
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Ni2P. A model that is transferable across different bulk
transition-metal phosphides would of course require additional
structure-specific inputs during training. Although the RRF is
trained using only a subset of dopant arrangements, having
verified the predictive power of Ni3-structure-based descriptors,
the RRF model should also be able to predict the ΔGH of other
dopant configurations with high precision and accuracy.
Unlike ⟨Ni−Ni⟩, ⟨qNi⟩ does not correlate strongly with ΔGH.

Even though the nonmetal dopants substitute at spectator sites,
it is contrary to common understanding of dopant effects that
their electronic structure does not play a large role in
determining HER activity. This could be explained by the
fact that Ni2P(s) is metallic and therefore charge partitioning
between the Ni and nonmetal components is less well-defined.
This hypothesis is corroborated by the results in Figure 2A,
which show that the average charge on Ni only changes by a
small fraction of the charge of an electron from low to high
surface doping concentrations. The structural parameters of the
Ni3-hollow site are more sensitive to changes in the surface
electronic structure and therefore they are able to more
accurately capture the trends between nX and ΔGH. This lends
further support to our claim that chemical pressure is the key
driving force behind the enhanced HER activity of doped
Ni3P2(0001). The connection between strain and catalytic
activity has been explored in the literature, especially with
regard to substrate-induced36,37 and electrochemically in-
duced38 strain. For example, compressive strain was demon-
strated to enhance the oxygen reduction reaction on dealloyed
Pt−Cu and Pt nanoparticles via enhancement of the binding of
intermediate oxygenated adsorbates,37,38 while tensile strain
was shown to stabilize CO and O chemisorption and CO
dissociation on Ru(0001).36 Here, expansion of the Ni3 site
(local, chemically induced tensile strain) reduces the affinity of
H due to the reduced H coordination. The most promising
catalytic system that we discovered was chalcogen-doped
Ni3P2(0001). For S (nS = 3), the HER overpotential is −0.11
V vs SHE. This is much lower than that of the Ni3-hollow site
in the absence of dopants (−0.45 V vs SHE).5 This
overpotential is similar to that of the P-enriched, non-
stoichiometric reconstruction (−0.07 V vs SHE) but this
surface is only accessible upon applying −0.21 V vs SHE.5

■ SUMMARY AND CONCLUSIONS
In summary, we have demonstrated that surface nonmetal
doping can significantly improve the HER activity of Ni2P. We
find that the Ni−Ni bond length is an effective descriptor for
the HER activity of Ni3P2(0001) of Ni2P and hence can be used
in a computationally efficient, high-throughput search to screen
for promising Ni-nonmetal catalytic materials. We have shown
how machine learning methodologies can be implemented in
the catalyst design pipeline to automatically discover and rank
the importance of structural and charge-based descriptors for
HER. Machine learning is highly customizable in that many
different model types can be selected (here we choose RRFs)
and the number and types of descriptors is limited only by
scientific creativity. We validated the results from our machine
learning by applying mechanical pressure to compress and
expand the Ni3-hollow sites, which showed that the effects of
chemical pressure via nonmetal doping and mechanical
pressure are in excellent agreement. Our results strongly
indicate that it is the induced local geometry of the Ni3-hollow
site and not the electronic character of the dopants that
improves the HER activity of Ni3P2(0001). We believe that this

insight should spur both experimental and theoretical research
in surface nonmetal doping of transition metal phosphides in
the wider effort find ideal HER catalysts.
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