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ABSTRACT: The properties of a material are often strongly
influenced by its surfaces. Depending on the nature of the chemical
bonding in a material, its surface can undergo a variety of stabilizing
reconstructions that dramatically alter the chemical reactivity, light
absorption, and electronic band offsets. For decades, ab initio
thermodynamics has been the method of choice for computation-
ally determining the surface phase diagram of a material under
different conditions. The surfaces considered for these studies,
however, are often human-selected and too few in number, leading
both to insufficient exploration of all possible surfaces and to biases
toward portions of the composition−structure phase space that
often do not encompass the most stable surfaces. To overcome
these limitations and automate the discovery of realistic surfaces,
we combine density functional theory and grand canonical Monte Carlo (GCMC) into “ab initio GCMC.” This paper presents
the successful application of ab initio GCMC to the study of oxide overlayers on Ag(111), which, for many years, mystified
experts in surface science and catalysis. Specifically, we report that ab initio GCMC is able to reproduce the surface phase
diagram of Ag(111) with no preconceived notions about the system. Using nonlinear, random forest regression, we discover
that the Ag coordination number with O and the surface O−Ag−O bond angles are good descriptors of the surface energy.
Additionally, using the composition−structure evolution histories produced by ab initio GCMC, we deduce a mechanism for
the formation of oxide overlayers based on the Ag3O4 pyramid motif that is common to many reconstructions of Ag(111). In
conclusion, ab initio GCMC is a promising tool for the discovery of realistic surfaces that can then be used to study phenomena
on complex surfaces such as heterogeneous catalysis and material growth, enabling reliable and insightful interpretations of
experiments.

1. INTRODUCTION

Theoretical modeling of surface chemical and physical
properties often involves making assumptions about the
surface structure. However, the physical and chemical
properties depend sensitively on these assumptions. The
simplest starting point for constructing a surface model is to
select a particular facet and then to identify bulk-like
terminations from the layering pattern normal to that surface.
This approach, however, does not take into account the fact
that many bulk-terminated surfaces undergo reconstruction to
chemically passivate surface-bound charges and/or saturate
surface atom coordination.1−9 Therefore, the ideal approach
involves an exhaustive exploration of all possible surfaces and
their reconstructions.
Such an undertaking has two main drawbacks: its computa-

tional cost can be prohibitive and the phase space of surface
structures is vast and sometimes surprising. Recently, progress
has been made toward overcoming these drawbacks by using
machine learning to more efficiently traverse surface phase
space. For example, genetic algorithms have been developed
that programmatically mate different surfaces to explore lower-
symmetry phases.10−12 Additionally, Gaussian process regres-

sion has been employed to learn intermediate surfaces, that is,
those that are a mixture of phases from the training set, thereby
reducing the number of first-principles calculations neces-
sary.13 Despite the power of these methods, their main goal is
to minimize the surface energy, and they accomplish this using
effective but potentially unphysical structural transformations,
thus rendering them unable to provide mechanistic informa-
tion about the natural evolution of the surface.
A simpler and more physically motivated way to explore

surface phase space is grand canonical Monte Carlo (GCMC).
In GCMC simulations, a system is in contact with both
thermal and chemical potential reservoirs, thus allowing
fluctuations in the temperature and number of particles.
Historically, this technique has been used to study adsorption
isotherms: molecules on metals,14 metal−organic frame-
works,15−17 carbon-based materials,18,19 zeolites,20,21 ionic
liquids,22 and activated carbon.23 GCMC has also been applied
to study the bulk phase diagrams of liquids,24 their mixtures,25
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alloys,26−28 fluids,29 and solvation phenomena.30,31 In
principle, GCMC can be used to generate a collection of
surface structures consistent with a predefined temperature and
set of chemical potentials of the constituent elements. An
application of GCMC to the prediction of surface
reconstruction, despite its simplicity and elegance, has never
been attempted.
To evaluate the efficacy of GCMC in predicting surface

phase diagrams, tests on a well-understood yet complicated
material must be performed. One such material that fits these
criteria is Ag, which plays an important role in plasmonics,32,33

catalysis,34,35 and medicine.36,37 Since the 1970s, many
versions of the Ag(111) surface have been proposed,
supported, rejected, and accepted.4−6,38−43 Early on, low-
energy electron diffraction and X-ray photoelectron spectros-
copy (XPS) measurements suggested that a Ag2O(111)
overlayer with p(4 × 4) surface periodicity grows on
Ag(111) because of its nearly matching lattice constants.38,39

With the advent of scanning tunneling microscopy and the re-
emergence of ab initio thermodynamics, a host of new
structures were proposed, including Ag-deficient and O-
enriched variants of the Ag2O overlayer,4,40,41 a Ag1.2O
cloverleaf-like overlayer,4 and, most recently, an overlayer
consisting of Ag9 islands each connected by two O atoms.5,42,43

Additionally, surface structures with many other periodicities
have been observed experimentally, such as a c(4 × 8)
overlayer, which possesses stripes of base-connected Ag3O4
triangular pyramids; to date, this c(4 × 8) pattern offers the
lowest surface free energy (for ΔμAg = 0 eV and −0.64 eV ≲
ΔμO ≲ −0.19 eV) of any Ag(111) reconstruction, as calculated
from the density functional theory (DFT).6

Here, we report the design of an algorithm and the
development of a computer program that implements GCMC
in the DFT software package Quantum ESPRESSO.44 Our
implementation of GCMC is open-source, portable, and
requires a small number of user inputs.45 We show that ab
initio GCMC, with a small set of simple configurational biases,
can independently (re)discover the key features of the oxidized
Ag(111) surface phase diagram, which puzzled surface
scientists for 5 decades. We also show that by analyzing the
ab initio GCMC results with a machine learning model, we can
understand and explain the relationships between different
structural features and the surface energy. We propose ab initio
GCMC as a flexible, general-purpose tool that not only
facilitates the discovery of surfaces that are likely to be
obtained under different conditions but also generates a rich
data set that, upon interrogation, reveals the driving forces
behind the formation of different surface structures.

2. METHODS
2.1. Theory. We work in the grand canonical ensemble,

where the chemical potential μ, volume V, and temperature T
of the system are fixed. The partition function of the grand
canonical ensemble is
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where kB is the Boltzmann constant, N is the number of atoms,

Λ is the thermal de Broglie wavelength, given by Λ =
π

h
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,

h is the Planck constant, m is the mass of the atom, U is the
potential energy, and s ⃗N are the fractional coordinates of the

atoms. The probability density corresponding to a particular
configuration (s ⃗N; N) is
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There are three different types of actions in unbiased
GCMC simulations: move the existing particles in the system,
add particles to the system, and remove particles from the
system. To ensure that the simulation satisfies detailed balance,
the acceptance probability for each action must satisfy

α α=μ μq P q P(1) (1, 2) (1, 2) (2) (2, 1) (2, 1)VT VT (3)

where 1 and 2 represent configurations (s1⃗
N1; N1) and (s2⃗

N2; N2),
respectively. α(1, 2) is the probability of attempting a move
from configuration 1 to 2 and P(1, 2) is the probability of
accepting that move. Because α(1, 2) = α(2, 1), the probability
of accepting an attempted “move” step46 is

= { }−ΔP min 1, e U k T
move

/ B (4)

where ΔU is the change in potential energy. For an “exchange”
step, if the probabilities of attempting an “add” or “remove”
action are equal, that is
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To focus on the growth of the surface in contact with
thermal and chemical potential reservoirs, we replace the
“move” action with a structural relaxation after “add” and
“remove” actions. The bias introduced by structural relaxation
can be countered by replacing the volume in the acceptance
probability (see eqs 6 and 7) with an effective volume Veff, as
discussed in previous works.47,48 For the “add” action, we
choose an element, each with an equal probability, and add it
to the system. Instead of randomly selecting the position of the
new atom, we include a configurational bias, which prevents
the new atom from being too close (rmin = 1.5 Å) or too far
(rmax = 3 Å) from the closest existing atom. If these criteria are
not met, then, we skip this step. This bias has little effect on
the detailed balance because all of the configurations we rule
out have very high energies and, practically speaking, could
never be accepted. For the “remove” action, we randomly
choose an atom and remove it from the system. To further
restrict the sampling to those phases relevant for surface
growth, we added a constraint that atoms can only be inserted
at or removed from positions near the top surface (see Figure
1). A flowchart for our ab initio GCMC scheme can be found
in the Supporting Information (see Figure S1).
In this work, we study the Ag(111) surface and its

reconstructions (see Figure 1). To sample a variety of surface
structures and compositions, we set the temperature of the
simulations to 500 K and test a range of chemical potentials
around the equilibrium between bulk Ag(s) and Ag2O(s), for
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which μAg = μAg
eq = GAg and μO = μO

eq = GAg2O − 2GAg. The free
energies of bulk Ag(s) and Ag2O(s) can be approximately
written as

≈ + Δ

≈ + Δ

G U G T

G U G T

( )

( )

Ag Ag
DFT

Ag

Ag O Ag O
DFT

Ag O2 2 2 (8)

where the temperature-dependent term is taken from
experimental data.49 We tested five different μO conditions
such that = { }− − −p p/ 10 , 10 , 10 , 1, 10O O

eq 10 6 2 2
2 2

. Because

the Ag/Ag2O bulk phase boundary corresponds to relatively
O-rich conditions, we choose three pO2

lower and only one pO2

higher than pO
eq

2
. The change in the volume from V to Veff in the

acceptance probability can be interpreted as a change in the
chemical potential, that is, δμ = kBT ln V/Veff. V/Veff ≈ 10
because the MC-inserted atoms can access only 10% of V, that
which is not occupied by the existing atoms. δμ is
approximately equal to a 1 order of magnitude change in the
partial pressure of O2. Therefore, we can directly use V, instead
of Veff, because our simulation is performed over a range of
chemical potentials and it will not influence the result.
As is the convention in the literature,50 we calculate the

surface energy relative to that of Ag(111)

γ γ γ* = −slab slab Ag(111) (9)

where γslab is defined as

γ μ μ= − −
A

U n n
1

( )slab slab
DFT

Ag Ag O O (10)

Here, A is the surface area and n is the number of atoms. A
factor of 2 is missing from the denominator because the
bottom layer of each slab is the same, that is, Ag(111), and its
contribution to γslab* cancels out.
2.2. Computational Details. DFT51,52 calculations were

performed using Quantum ESPRESSO (version 6.2.1).44 The
generalized gradient approximation of Perdew, Burke, and
Ernzerhof was used to treat electron exchange and
correlation.53 Designed nonlocal,54 optimized,55 norm-con-

serving pseudopotentials56 were generated for Ag and O using
OPIUM.57 We used 5s, 5p, and 4d as the valence states for Ag
and 2s and 2p for O. We generated a slab model of the p(4 ×
4) Ag(111) surface with three Ag layers and ≈18 Å of vacuum
space (see Figure 1). For structural optimizations of the slab
model, we fixed the bottom layer and used total energy and
force convergence thresholds of 0.01 eV/slab and 0.1 eV/Å,
respectively. We sampled the Brillouin zone using a 3 × 3 × 1,
Γ-centered k-point grid. We also applied a dipole correction
along (001) to cancel the artificial electric field across the
slab.58

Random forests (RFs) were trained using the scikit-learn
package (version 0.19.1) for Python (version 3.6.5).59

Processed data and Python scripts for the machine learning
can be found in the Supporting Information. We removed
highly correlated and near zero-variance descriptors from our
data set. We randomly split the data set into a training and
testing set with 2/3 and 1/3 of the data, respectively, so that
we could estimate the out-of-sample error in the surface energy
prediction.

3. RESULTS
3.1. Surface Phase Diagram of Ag(111). We perform a

series of GCMC simulations, starting from the clean Ag(111)
surface, under the conditions described above. Each chemical
potential is simulated three times to improve the sampling of
surface (composition and structure) phase space. Figure 2

shows the surface phase diagram generated by GCMC. There
are three main regions of this phase diagram with respect to
ΔμO (see thick dotted lines). For ΔμO ≤ −0.51 eV, the clean
Ag surface is stable (see the red line and Figure 3A). From
−0.51 eV ≤ ΔμO ≤ −0.19 eV, surface oxides form. At ΔμO =
−0.19 eV, Ag undergoes a bulk phase transition to Ag2O. Over
6000 structures were sampled by the GCMC simulations, and
the lines showing their surface free energy versus ΔμO are
shown in gray. Practically speaking, each of the gray lines
corresponds to an explicit DFT calculation of Uslab

DFT in eq 10.
We obtained a broad distribution of surface free energies, with
values well below and above that of Ag(111) (see red line).

Figure 1. p(4 × 4) Ag(111) slab model for GCMC simulations. We
set the temperature and the chemical potentials of Ag and O. The
surface is three layers thick, with the bottom layer fixed and ≈18 Å of
vacuum. Atoms are only added to or removed from the variable
composition region, which extends from 3.5 Å below to 3.5 Å above
the top layer of Ag.

Figure 2. Surface phase diagram of Ag(111) exposed to O2, generated
by GCMC. There is a gray line for each surface sampled. The red and
green lines correspond to Ag(111), that is, the starting point and the
surface energy convex hull, respectively. The thick dotted lines
separate the three main regions of the phase diagram, and the thin
dotted lines separate lightly shaded regions for the four surface phases
(A−D, see Figure 3) that constitute the hull.
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Four different structures make up the surface energy convex
hull (see green line). For ΔμO ≤ −0.51 eV, Ag(111) is
preferred. Between −0.51 eV ≤ ΔμO ≤ −0.49 eV, one O per
surface unit cell adsorbs onto a Ag3-hollow site (see Figure
3B). At ΔμO above −0.49 eV and below −0.37 eV, surfaces
oxides grow in the form of Ag3O4 pyramids (see Figure 3C). O
atoms at the corners of these pyramids bind to the surface at
Ag3-hollow sites. Under O-rich conditions, that is, ΔμO ≥
−0.37 eV, a continuous surface oxide layer forms with the
composition Ag10O7 (see Figure 3D). This surface consists of
edge-sharing, distorted Ag3O4 and symmetric Ag4O5 pyramids.
There is also an O atom at one of the two exposed, sublayer
Ag3-hollow sites.
This phase diagram, generated automatically using GCMC,

is in excellent agreement with the experimental and theoretical
literature on Ag(111).4−6,38−43,50,60−62 The Ag3O4 pyramid is
common to many of the structures that have been

proposed.4,6,38−41,50,60 These pyramids can arrange themselves
in a variety of geometries, such as Ag2O(111)-like hexagons
and shamrocks.4,38−41,50,60 The Ag10O7 surface we find is very
similar to a c(4 × 8) reconstruction that has been synthesized
and, to date, has the lowest reported DFT surface energy.6 The
main difference is that this structure contains unconnected
chains of edge-sharing Ag3O4 pyramids, whereas in our
structure, the chains are connected, which induces 4.52
meV/Å2 increase in the surface energy. In this study, we
impose p(4 × 4) surface periodicity based on historical
precedent. However, oxide adlayers with different periodicities
have been reported in the literature.6,43,63 If we had imposed a
smaller surface unit cell, Ag3O4 pyramids could still form but
may not dimerize, thereby precluding the growth of 2D,
continuous surface oxides like the Ag10O7 surface. We find that
four unit cells perfectly fit pyramid dimers and that multiples of
four are necessary to form chains of pyramid dimers.
Therefore, while surface periodicity can affect the ground
state arrangement of Ag3O4 pyramids, p(4 × 4) is ideal for
computational studies because it is the smallest surface unit cell
that can host 2D, continuous overlayers. It is noteworthy that
ab initio GCMC, given only a few inputs and without any prior
knowledge of the system, is able to reproduce the important
features of the Ag(111) surface phase diagram, which took
many decades to decipher.

3.2. Structural Descriptors for the Surface Energy.
The GCMC simulations described in Section 1 generate a
large data set composed of structures and energies. This
enables the use of machine learning, namely, RF regression, to
determine the structural features that govern surface stability.
We choose RF regression because we have shown previously
that it is a powerful method for the discovery of structural and
electronic descriptors for surface chemical properties like
catalysis.64 An RF is an ensemble of decision trees, each trained
on a random subset of the data. The decision trees learn by
splitting the data based on values of the independent variables

Figure 3. Stable Ag(111) surfaces and reconstructions discovered by
GCMC: (A) clean Ag, (B) O at a Ag3-hollow site, (C) formation of a
Ag3O4 pyramid, and (D) growth of a Ag10O7 overlayer. All surfaces
have p(4 × 4) periodicity.

Figure 4. Analysis of structural descriptors for the surface energy. (A) Relative importance of descriptors calculated from the RF model. (B) Surface
energy predicted by RF vs DFT. The black-dashed line corresponds to perfect agreement. (C) Effect of the Ag coordination number (CN) with O
(cnAgO) and (D) effect of the magnitude of the Ag−O bond vector (BV) sum (bvAgO) on the surface energy. cnAgO is the number of O within 3
Å of Ag including bonding to the layer below. The thin, black-dashed lines highlight the trend of increasing free energy for deviations from ideal
CN or BV sum. Stars denote the Ag10O7 surface.
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(e.g., bond length = 2 Å) and then finding which of those splits
best separates the data based on the dependent variable (e.g.,
surface energy). This type of learning is referred to as
supervised because we know the value of the output for
different sets of inputs. After supervised learning, the RF model
can rank the importance of each feature and predict the surface
energy (see Figure 4A,B, respectively). Feature importance is a
measure of how well splits based on each independent variable
separates the data based on the dependent variable. We
consider four types of structural features at the surface and
calculate their averages: (1) bond length between atoms A and
B (“bondAB”), (2) number of atom B within 3 Å of atom A
(“cnAB”), (3) magnitude of the sum of the bond vectors
(BVs) pointing from atom A to all atom B within 3 Å
(“bvAB”), and (4) z-component of the BV sum (“bvzAB”).
Note that atoms A and B correspond to different elements. In
addition to structural features, we calculate the global
instability index (“gii”), which measures deviations of each
atom from its preferred atomic valence.65

Figure 4A,B shows the importance of all of the features and
the goodness of fit of the RF model, respectively. The model
has a root-mean-squared error (RMSE) of 2.16 meV/Å2, and
the data in Figure 4B lie very close to the perfect correlation
line. This result shows that we have included features that are
excellent descriptors of the surface energy. Scatter plots of
surface energy versus the two most important descriptors, that
is, cnAgO and bvAgO (see Figure 4C,D, respectively), reveal
trends that help rationalize the stability of the Ag10O7 surface.
Both plots have large spread in the surface energy and concave
envelopes tracing the surface energy minima along the
descriptor direction (see thin, black-dashed line). The
sharpness of these envelopes near the surface energy minimum
indicates that surfaces have a clear tendency for cnAgO = 2 and
bvAgO ≈ 0.5. The former means that each surface Ag atom
tends to form two bonds with O. The preferred value of
bvAgO requires a more careful interpretation. bvAgO is zero
when Ag either has no O neighbors or the Ag−O BV sums
cancel. In the context of twofold coordination of Ag with O,
bvAgO is small when the O−Ag−O chain is slightly bent (≈5°,
see inset in Figure 4D).
3.3. Mechanistic Analysis of GCMC Composition−

Structure Evolution Histories. While many oxide overlayers
have been proposed, the mechanism of their formation remains
unclear.4−6,38−43,50,60−62 It is known that surface oxide
formation requires facile O2 dissociation and significant mass
transport of Ag and O.60,61 A benefit of using GCMC is that it
produces a composition−structure evolution history, which
can be analyzed to reveal the stages of surface reconstruction.
Figure 5 shows the path taken by the GCMC simulation to
obtain the Ag10O7 surface. There are three main stages of the
mechanism: chain growth, pyramid formation, and pyramid
dimerization. At the beginning of the first stage, pairs of O
atoms adsorb onto nearby Ag3-hollow sites (see Figure 5A). At
the same time, they extract a Ag atom from the surface,
forming surface O−Ag−O chains and subsurface Ag vacancies.
Each single chain serves as a nucleation center from which
longer chains can grow, such as double and branched chains,
through the addition of extra Ag and O from their respective
chemical potential reservoirs (see Figure 5B,C, respectively).
The latter is a critical intermediate in the formation of Ag3O4
pyramids in the second stage. Here, the branched chain
reorients itself via O hopping between Ag3-hollow and Ag2-
bridge sites (see Figure 5D). After the pyramid forms (see

Figure 5D), the subsurface Ag vacancy is filled. Finally, in the
last stage, pyramids dimerize. This starts with chain growth
from one of the corners of the pyramid (see Figure 5E). Once
a double chain is formed (see Figure 5F), it repositions itself
(see Figure 5G) and, upon the deposition of Ag atom, forms a
dimer (see Figure 5H), which is the main repeating unit of the
Ag10O7 surface.
Because many proposed overlayers express the pyramid

motif,4−6,38−43,50,60−62 this is a plausible mechanism for their
formation as well, except for the third stage. Recall that the
best descriptors of surface energy from the RF model are the
Ag−O CN and BV sum. Not only do the most stable surfaces
exhibit ideal values for these descriptors but their building
blocks, that is, chains and pyramids, do as well. This shows
that, within the context of this mechanism, Ag−O CN and BV
sum are the key driving forces behind the reconstruction of
Ag(111).

4. DISCUSSION
Here, we discuss the strengths and weaknesses of ab initio
GCMC and provide some recommendations for its future
application. Its strengths are that it requires few inputs and has
minimal bias toward a particular solution. There are two
parameters per element for the configurational bias (rmin and
rmax), one parameter defining the dimensions of the variable
composition region (see Figure 1) and three parameters for the
GCMC simulation (T, μAg, and μO). In ab initio thermody-
namics studies of surface reconstructions, it is a common
practice to generate a set of reasonable trial structures,
sometimes numbering in the hundreds.4,6,50,60−62 It is difficult,
however, to remove bias from this procedure when the
structures are human-selected. Such biases are avoided in
GCMC because each structure is selected proportionally to its
weight in the grand canonical ensemble, which more closely
resembles selection in nature. The weaknesses of ab initio
GCMC are that it relies on costly ab initio calculations and

Figure 5. Mechanism for the formation of the Ag10O7 surface (see
Figure 3D). Red, white, and blue circles correspond to O atoms, their
previous position, and subsurface Ag vacancies, respectively. Ag atoms
are represented by a thick gray line. The mechanism involves three
stages: (A−C) chain growth, (D) pyramid formation, and (E−H)
dimerization. In the chain growth stage, (A) an O−Ag−O chain and
subsurface Ag vacancy form followed by (B) linear and (C) branched
chain growth. (D) Next, O atoms jump to new sites and the
subsurface Ag vacancy is filled, forming a Ag3O4 pyramid. Finally, in
the dimerization stage, (E,F) linear chains grow from the pyramid,
which (G) undergoes a concerted rotation. Upon the deposition of a
Ag atom, a pyramid dimer is formed.

The Journal of Physical Chemistry C Article

DOI: 10.1021/acs.jpcc.8b11093
J. Phys. Chem. C 2019, 123, 2321−2328

2325

http://dx.doi.org/10.1021/acs.jpcc.8b11093


only works for surfaces. The first weakness can be overcome by
replacing DFT with reactive force fields (e.g., Reaxff,66

REBO,67,68 and COMB69) or machine-learning atomistic
potentials (e.g., aenet70,71). There is a trade-off, however,
because these methods require careful parameterization and
testing and are only available for a small but growing set of
systems. A current limitation of our software is that it can only
be used for the study of surfaces. We are already in the process
of generalizing the code so that it can also be used to study
bulk materials and nanoparticles.
Given its success with surfaces, we believe that ab initio

GCMC will become an important tool for research in
heterogeneous catalysis. Take, for example, the epoxidation
of ethylene over Ag, where it is believed that an electrophilic
surface O species, seen in XPS measurements, is the key to
selective formation of ethylene oxide.50,60,72−80 For the
reconstructions of Ag(111), however, this species is not
observed, thus leading to the conclusion that the stable
surfaces are not responsible for catalysis.77 Because GCMC
samples both stable and unstable structures, it may find
surfaces that do possess electrophilic O species and can
therefore catalyze selective epoxidation. In practice, this could
involve three steps: (1) reach equilibrium with μAg and μO, (2)
introduce ethylene chemical potential reservoir μC2H4

, and (3)

reach equilibrium with μAg, μO, and μC2H4
. Alternatively, we

could apply a bias toward higher free energies that would
increase the sampling of surfaces that are less stable but
potentially more catalytically active. Other promising applica-
tions of ab initio GCMC include the study of binary and
ternary materials (e.g., TiO2 and SrTiO3), re-entrant
transitions, solvation by including a solvent chemical potential
reservoir, and nanoparticle growth for crystal structure
prediction.

5. CONCLUSIONS

In this paper, we introduce our new method of ab initio
GCMC for the investigation of surface reconstruction. This
method requires a minimal number of selected parameters,
enables surfaces to evolve under realistic conditions, and
reduces bias associated with the selection of trial structures for
surface stability analyses. We show that ab initio GCMC
reproduces the salient features of the Ag(111) surface phase
diagram, which took decades to unravel, and, in particular,
finds a surface (Ag10O7) that is in excellent agreement with the
most stable surface reported in the literature. By analyzing the
composition−structure evolution histories of GCMC simu-
lations, we propose a mechanism, based on O−Ag−O chain
growth and rearrangement, that can explain the formation of
Ag3O4 pyramid building blocks, which are common to a
number of nearly-stable reconstructions of Ag(111). We also
show the advantages of using GCMC to generate data for the
discovery of structural descriptors of the surface energy via
machine learning. We find that the most relevant descriptors
(CN of Ag with O and norm of the Ag−O BV sum) support
our proposed mechanism and therefore are key driving forces
for reconstruction. Ab initio GCMC, from structure generation
to analysis, is fully transferable to the study of the surfaces of
other materials and also holds promise for the exploration of
other processes, such as heterogeneous catalysis and nano-
particle growth.
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